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Preface
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Abstract

A common requirement for all lunar and planetary missions is the extremely
accurate determination of the trajectory of a spacecraft. The Double Precision
Trajectory Program (DPTRAJ) developed by JPL has proved to be a very

accurate and dependable tool for the computation of interplanetary trajectories
during the Mariner missions in 1969. This report describes the mathematical

models that are used in DPTRA] at present, with emphasis on the development
of the equations.

+! ,+."
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Design and Implementation of Models for the Double

Precision Trajectory Program (DPTRAJ)

I. Introductior,

An important factor in determining high-precision

interplanetary trajectories is the computation and sub-

sequent integrahon of the acceleration of a spa.,2ecraft

that is moving in the solar system and is subject to a

variety of forces. The forces acting upon the spacecraft

determine its acceleration according to Newton's second

law; therefore, knowledge of the forces implies knowledge

of the acceleration of the spacecraft. Integration of the
total acceleration in some convenient frame of reference

establishes the ephemeris of the spacecraft, and hence

its trajectory.

The only known method for describing the above-
mentioned forces is that of mathematical models; i.e., one

or more equations describing certain physical phenumena.

It should be clear that every model reflects reality only

to a certain degree, Many of the forces are not well

kno_-n at present (e.g., the effect of the harmonic co-

efficients of Mars) and others are so small that they are

negligible; ff.erefore, only a relatively small number of
models describing forces acting upon the spacecraft exist

at the present time, and most of these are s_bject to
improvement beeattse of new knowledge acquired in

various fields of the physical sciences.

Because the total acc.rleration of a spacecraft cannot
be integrated in closed form, recourse must be taken to

numerical methods. At present, the equatiorts of motion

of a spacecraft are integrated by a so-called second-sum

numerical-integration scheme relaHve to some central

body (Cowcll method).

The equations of motion are solved for the spacecraft

ordy, and ignore the negligible perturbations of the space-

craft on celestial bodies (i.e., on the sun, moon, and

planets); hence, it is sufficient to obtain positions and

velocities of these bodies in the form of planetary and
lunar cphemerides in some _nvenient reference frame.

The coordinates have been tradit;onally referred to the

Cartesian system, based on the earth mean equator and

equinox of 1950.0; thus, the elhemerides of the spacecraft

and the bodies are uniformly expressed in this system.

The collection of the ephemerides is usually done on a

magnetic tape--the so-called ephemeris tape.

To obtain information about the spacecraft or any of

the bodies in some other reference frame, an appropriate

transformation must be applied to the 19,50.0 frame.

It should be noted that many of the numerical values of

angles and related information given in Section V are

T

i

,IPI TECHNICAL NIEMOgANDUM 33.451



subject to revision and should, therefore, not be con-
sidered final.

Ih Time and Coordinate Transformations in

General

This section describes time transformations and the

transformation of the input spacecraft initial conditions
(injection eonditions)mwhieh may be expressed in one of

many systems---to the earth mean equator and equinox
of 1950.0 Cartesian coordinates. Three types of coordinate
transformations will be discussed: conversion, rotation,
and translation.

A. Coordinate Conversions

There are five basic _,pes of coordinate conversions,
as follows:

From

Spherical (R,_,#,V,7,_)

Cartesian (X,Y,Z,X,I_,Z)

Classical orbital

(a,e,i,_,fl,at)

Cartesian (X,Y,Z,_¢,i'_)

Asymptotic
(_,L,R,P,Cs,_,,H,)

Pseudo-asymptotic

(_ , ,R,r ,C,, _ ,,H ,,R,_)

To

Cartesian

Spherical (R,ck,O,V,7,_)

Cartesian (X,Y,Z,X,Y,Z)

Classicalorbital

(a,e,t, oJ,fLat)

Cartesian (X,Y,Z,X,Y,Z)

B. Rotations

The Cartesian elements can be expressed in any of the
coordinate systems described below, and can be trans-
formed from one system to another, t

1, Space._xed. The x-axis is in the direction of the

ascending node between the orbit of the planet and its
equatorial plane. The equinox can be that of 1950.0 or

any later time. The z-axis is normal to the specified plane
itJ the same direction as the ang,flar-momentum vector.

The !/-axis completes the right.handed coordinate system.

_Witt, |. W., JPL internal document, Oct. 20, 1968.

The

(i)

(s)

(4)

(s)

coordinate systems are:

Earth mean or true equator.

Earth mean orbit (defined by the ascending node
of the earth orbit on the earth mean equatorial
plane).

Earth true orbit (defined by the ascending node
of the earth orbit on the earth true equatorial
plane).

Mars mean and true orbits.

Mars mean equator (computed from Mars mean
orbit).

(6) Mars true equator (computed from Mars true
orbit).

(7) Moon true equator.

_. Body.]ixed. The xy-plane is the true of date equa-
torial plane of the planet. The x-axis points toward the
prime meridian of the planet, the z-axis points to the north
celestial pole, and the y-axis completes the right-handed
coordinate system. Three body-fixed systems will be
described_the systems for earth, Mars, and the moon.

The transformations will be discussed in the following
sequence:

(1) Time transformations.

(9.) Coordinate types of transformation (i.e., spherical
to Cartesian, etc.).

(3) Earth-related transformations.

(4) Mars-related transformations.

(5) Moon-related transformations.

(0) Translation of centers.

III. Systems Of Time

The familiar time that we keep on our clocks and
adjust occasionally by means of signals sent out from

Naval observatories is known to be subject to irregular
changes; i.e., time, which is generally considered the
uniform argument in all applications, is actually not a
singie-invariant quantity. This fact may be disregarded
for most purposes of measuring time; in orbit and trajec-
tory computations, however, the nonuniformity of time

JPL TECHNICAL MEMORANDUM 33-451
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must be taken into account. In fact, to determine any

orbit from earth-based observatio,s, it is necessary to

have at least two independent and quite distinct forms

of time; namely, sideleal time for the observer and

ephemeris time for the calculation of ephemerides.

A. Tropical Year and Ephemeris Time 2

The standard for time measurements is the tropical

year, which is the time required by the sun to make an

apparent revolution of the ecliptic from vernal equinox to

vernal equinox; however, this time interval is not constant

because of the precession of the equinoxes. Therefore,

the reference year was arbitrarily chosen as the instan-

taneous tropical year at 1900; in practice, it is defined in

terms of the angular rate of the mean sun of 1900.0 as

determined by observation. The adopted value of this

rate is 129,602,768.13 s/Julian century of 36,525 days. In

this context, the day is expressed in terms of an inde-

pendent parameter that appears in the theories of the

motion of bodies in the solar system. This parameter is

called ephemeris time (E.T.). The number of ephemeris

days in the tropical year 1900.0 is

1 tropical year = 360 × 60 × 60 ×
36,525

129,602,768.13

= 365.24219879 ephemeris days (1)

Ephemeris time is the uniform measure of time that is

the independent variable for the equations of motion,

and hence it is the argument for the ephemerides of the

planets, the moon, and the spacecraft.

B. Atomic Time

Atomic time (A.1) (Ref. 1, p. 36) is obtained from

oscillations of the U.S. Frequency Standard located at

Boulder, Colo. The value of A.1 was set equal to UT2

(see below) on January 1, 1958, at 0h0m0 ' UT2. Atomic

time increases at the rate of 1 s/9,192,631,770 cycles of
the cesium atom, which is the best current estimate of

the length of the ephemeris second.

C. Univecsal Time

Universal Time (UT) is tile precise measure of time
that ,.'_used as the b_,sis .¢or all civil time-keeping, and is

defined (Bef. 2, p. 78) as 12 h plus the Greenwich hour

_Witt, ]. W., ]PL internal document, Oct. 20, 1.968.

angle of a point on the true equator whose right ascension

measured from the mean equinox of date is

Rv(UT) = 18_'38m45."836 + 8,640,184."542 T_. + 0."0929 T 2U

(2)

where T_- is the number of Julian centuries of 36,525 days

of UT clasped since 1900 Jan 0, 12 h UT. The hour angle

of this point is _ (Greenwich hour angle of mean equi-

nox of date). Hence, UT is a function only of _:

0jr = UT + Rv(UT) + 12 h 0 <__0_, UT _< 24 h

Universal Time is obtained from meridian transits

of stars by the U.S. Naval Observatory. At the instant of

observation, the right ascension of the observing station

is equal to that of the observed star relative to the true

equator and equinox of date. Subtraction of the east

longitude of the observing station gives the true Green-
wich sidereal time # at the instant of observation:

0 = true Greenwich sidereal time (Greenwich

hour angle of true equinox of date) (3)

Each observing station has a neminal value of longi-

tude used for computing UT; if this nominal value is

used, the resulting UT is labeled UT0. Because of wan-

dering of the pole, the latitude and longitude of a fixed

point on the earth are a function of time. If the true

longitude of the observing station at the observation time

is used, the resulting UT is labeled UT1. When the pre-

dictable seasonal fluctuations of UT1 are removed, the

resulting time is labeled UT2.

D. Transform_tiO_ Betweeh Tim_ Scales s

The most common problem is to find the E.T. for

ephemeris consultation. The transformation between A.1

time and E.T. is given by

E.T. - A.I = aTe,:,, - (T - Ts,) af..t.m
9,192,631,770

+ 0.8'29 (l. + a)lO _sin E

_Witt, J. W., JPL internal document, Oct. 20, 1968.

(4)
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T

To8

Afeeelu m =

time difference (in seconds) between A.1
and E.T. at 1958.0 (solve-for parameter)

A.1 or E.T., in seconds, past January 1,
1950, 0h0_0"

252 460 800.0 (i.e., January i, 1958, 0_0_0 Sin
seconds past January 1, 1950, 0h0_0S)

change in cesium frequency (a solve-for
parameter)

The last teim of Eq. (4) accounts for general relativistic
effects:

of coordinate time in the heliocentric (strictly barycentric)
space-time frame of reference.

The remaining transformations between the various

time scales are specified by linear or quadratic functions
of (T - t):

A.1 - UTC = d + e (T - t) (5)

X.1- UT1 = f + g (r - t) + h (r - t)_ (8)

where

d,e,f,g,h,t = given parameters

UTC = time scale (see Glossary)

a = 1 or -1 depending on whether or not it is
desired to include general relativistic effects
of the rotation of the geoeenter about the
earth-moon barycenter

E = eccentric anomaly of the heliocentric orbit
of the earth-moon bar)center

For an accuracy of 104 s in the value of the periodic
term (see Ref. 1, p. 37), the eceen_e anomaly E may be
computed from the following approximate solution to
Kepler's equation:

E_M + esinM

IV. Coordinate Type Transformations

A. Spherical to Cartesian Coordinates Transformation_

In spherical coordinates, position and velocity are given
by the triples R, ck,Oand V,y,_, respectively. Given these
two triples, it is required to compute X,Y,Z and 2C,_',Z.
From Fig. 1 and elementary trigonometry, it follows that

-- Rcos sin /
\ R sin q, /

(7)

where

e = eccentricity of heliocentric orbit of earth-moon
barycenter (0.01672)

M = 328028'32'_7 + 129,596,579'.'10 T

where T is the number of Julian centuries of 30,525 days
of E.T. elapsed since 1900 Jan 0, 12 h E.T.

The first term of Eq. (4) arises because A.1 was set
equal to UT2 at the beginning of 1958. The second term

accounts for the difference between the lengths of the
E.T. and A.1 seconds (if af¢°,,_,, is nonzero). The periodic
term arises, as mentioned above, from general relativity.
It accounts for the fact that A.1 time is a measure of
proper time observed on earth, and that E.T. is a measure

4Witt, J. W., JPL internal document, Oct. 20, 1968.

z

" _ __ SI
z

_ __
A "\ "_- H-PIJLNE

/ \ '

x

Fig. 1. Spherical coordinates

JPL TECHNICAL MEMORANDUM 33-451

- _ _..... , .............................................. _" 7



S1

H-PLANE-_ /

EAST/s2

Fig. 2. Enlargement of the H-plane

If the velocity in the S_,52,53 reference frame (Fig. 2)
is computed, the velocity components 2(,,_',,Z, are given

by

Y., / = _ Vcosvsi n,r

Z_/ \ V cosv cos,7

(8)

The rotation matrix relating the" XYZ system to the

S_,S_,S3 system consists of the product of two rotation
matrices:

C = C_C1

(o0 on0/= 0 1 0 --sin 0 cos 0 0

--sin@ 0 cos@ff 0 0 1

cos ¢ cos 0
= -sinO

- sin ¢ cos 0

cos @sin 0 sin @

)cos 0 0

- sin @sin 0 cos @

(9)

where

C, = matrix that rotates XYZ frame about Z-axis by
angle 6; this yields X'Y'Z system

C2 = matrix that rotates X'Y'Z frame about Y'-axis by

angle @;this yields $1,S_,$3 system

Hence, the velocity components 2(,_',Z in the XYZ system

are given by

(lO)

c,

Because C is an orthogonal matrix, C-1 = Cr; and from Eqs. (9) and (10), it follows that

n= cos @sin 0 cos #

sin @ 0
-si° si°  v s si°o/

cos @ \ V cos v cos ,_/

(11)

Equations (7) and (11) give position (X,Y,Z) and velocity (X,_',Z) in Cartesian coordinates.

B. Cartesian to Spherical Coordlnmes Transfofmatlon

Given X,Y,Z and X,_',Z, the problem is to compute the spherical coordinates R,@,0 and V,_,_ (this is the inverse of

the transformatio'a described in Section IV-A). From Fig. 1, it is easily seen that

R = (X_ + y2 + Z2)_,

= sin -_ (Z_), -90 deg _ @< 90 deg

0 = tan-' (-_--), 0deg < 0 < 860deg

JPL TECHNICAL MEMORANDUM 33-45|
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From Eq. (10), there immediately follows

y, = 13

Z, Z

where C is given by Eq. (9). Then (see Fig. 2),

(13)

v = + +

.
7 = sin- k--Q--), --,90 deg < 7 -< 90 deg

_= tan-' (Y_-_ _, Odeg < _r < 360 deg
\z,_/

(14)

Equations (12) through (14) express R,cb,6 and V,7,a in
terms of X,Y,Z and X,Y,Z.

C. Classical to Cartesian Coordinates Transformation

Given At, i, fl, _, a, e, and _t, where

(t - T) = at = time of epoch minus time of perifoeal

passage

i = angle of inclination

fl = longitude of ascending node

= argument of perifoeus

a = semimajor axis (in case of a parabolic

orbit, pericentron distance q must be

supplied instead of a)

e = eccentricity

t_ = gravitational constant

the problem is to find the inertial coordinates X,Y,Z and

the velocity components X,Y,Z as a'function of time for

either a hyperbolic, an elliptic, or a parabolic orbit. The

orbital elements are shown in Fig. 3.

Kepler's third law states that the orbital period P is

computed according to

P = _ see (15)

The mean motion n is then given by

n- _ - rad/see .....

Kepler's equation is given for elliptic orbits by

where

M = n_t = E - e sin E

(16)

(17)

M = mean anomaly

e = eccentricity

E = eccentric anomaly

Differentiating M with respect to time, one obtains

= n (18)

The rotation matrix S = Sa" $2" Sx for rotating the

XYZ system into the orbital plane is

S - sin _, cos _ 0 cos i

0 0 0 - sin i
0)(co no0)sin i -- sin fl cos t2 0

cos i 0 0 1

(cos _ cos fl - sin _ cos i sin fl)

(- sin _ cos f_ -- cos w cos i sin fl)

(sin fl sin i)

6

(cos w sin fl + sin t_ cos i cos fl)

(-- sin _, sin fl + cos fl cos _ cos i )

(- sin i cos t)

JPL TECHNICAL

(sin _ sin i) ]
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(cos,, sin i) | (19)
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Fig, 4, Eccentric and true anomalies

Fig. 3. Orbital elements
and, therefore, also

-"X(_

where $,,= 0

S8 = matrix for rotating through angle ,o

82 = matrix for rotating through angle i

81 = matrix for rotating through angle f2

Hence, it suffices to compute x., y., _,o, and _,,.

I. ElUptie orbit. From the geometry of Fig, 4, it is
obvious that

The orbital rectangular coordinates (x,o,y.,z.) are then
transformed to Cartesian position and velocity eoordi- r cos _ = x. _

nates (X,Y,Z) and (X,_',Z), respectively, in the reference = a cos E - ae _

plane by
i

r

y = s r y. (_o)

Z Zw "_

and

= Sr !/,, (21) _'

that is,

x. = a (cos E - e) (2_)

where E is the eccentric anomaly, which is defined in

Fig. 4.

Now, in polar coordinates, the equation of an ellipse is

given by

r = a (1 - e cos E)
where S r is the transpose of matrix $ given by Eq. (19).

where e is the eccentricity. 'then
Because in all three cases (elliptic, hyperbolic, and i

parabolic) the orbit is planar, it is clear that
tP. = r' - x_.

= a_ (1 - e 2) sin 2Ezl=0
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and

y_ = a (1 - e2)_' sin E

= rsinv

where v is the true anomaly (see Fig. 4).

From Eqs. (22) and (23), it follows that

_ = -aE sin E

_, = a (1 - e2)_ E cos E

The value of E is found from .........

(23)

M = E - e sin E (25)

by use of some iterative procedure; e.g., regula falsi (see
Appendix C),

The time derivative of Eq. (25) yields

1 -- e cos E

n

1 -- e cos E (26)

by use of Eq. (18). Then

- an sin E
x'- 1-ecosE

ft, = an (1 - e_)v"cos E1 - e cos E (27)

SPACeCrAFT

Fig. 5. A hyperbolic orbit

same semimajor axis and the same center as the hyper-
bolic trajectory. From the definition of hyperbolic func-
tions,

so that

or

DC = -a eosh F

x_ = OD = q - (-a cosh F + a)

= a(1 - e) + acoshF- a

x,= a(coshF-e) (28)

2. ilyperbolic orbit. To find xw and y,, for a hyperbolic
path, recourse must be taken to hyperbolic functions
because a assumes negative values. In analogy to the
eccentric anomaly E of the ellipse, it is possible to define
a new variable for hyperbolic motion as

Also,

_w m r C0$ v

(see Fig. 5); and, by substitutiori of this result into the
general equation of a conic,

e

9. X area SPC

a S

r m

P
I + ecosw

where the area SPC is defined in Fig. 5. Corresponding
to the auxiliary circle in the case of ari ellipse, there is
an auxiliary hyperbola which is rectangular with the

it follows that

r + ex_, = p

= a (1 - e')

JPL TECHNICAL MEMORANDUM 33-451
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(see Eq. B-7, Appendix B).

Substituting for x,o from Eq. (28), one obtains

r = a (1 - e cosh F)

Because

y= is given by the expression

go, = -a (e2 - 1)v' sinh F (29)

The mean anomaly for hyperbolic motion is defined by

M, = e sinh F - F (30)

_th

Mn = n (t - T)

hence,

F is computed from Eq. (30) by use of an iterative pro-
cedure; e.g., regula falsi (see Appendix C).

Differentiating Eqs. (28) and (29) with respect to time,
one obtains

_, = a/_ sinh F

_ = --a (e_ -- 1)v"/_' cosh F

/_ is computed from Eq. (30) as

Hence,

e cosh F - 1

n

¢ cosh F - 1

(31)

an sinh F
x" = e eosh F - 1 (32)

_,, = -an(e 2 - 1)v' cosh F¢ cosh F - 1 (33)

JPL TECHNICAL MEMORANDUM 33.451

Equations (28) and (29) and Eqs. (32) and (33) give the
position and velocity, respectively, of a spacecraft on a
hyperbolic orbit.

3. Parabolic orbit. In the case of parabolic orbits
(Fig. 6), a = oo, e = 1, and Kepler's equation is indeter-
minate. Therefore, a new relationship between position
and time nmst be sought. The equation of a conic, special-
ized to the parabola, is given by ..........

P 2q
= (34)r= l--ecosv l--cosy

because p = q (1 + e) = 2q for the parabola, where v is
the true anomaly.

By the half-angle formulas, Eq. (34) becomes

r = q [1+ tan2 (-_-I] =q[ sec' (_.)] (35)

From a derivation in Ref. 3 (pp. 112-113),

r4 _=
p-

where t_ is the gravitational eoetllcient of the reference
body, kmVs =. Thus,

(t_p)v. = (2t_q)_ = r2_ =

q_[1 + tan_ (_-)][seC (-_-)] dv

P

I

J

=

J

Ph
It X¢ d

Fig. 6. A parabolic orbit

_L
.............................................. ' q
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Upon simplification:

dt -_[,
(36)

Integration of Eq. (36) between T and.tJyields

= At --

(+) (+)tan + -_- tan s

Rearrangement of Eq. (37) yields

Letting D = (2q) v" tan (v/2), one obtains from Eq. (38)

1
D 3 + qD = t_nAt (Barker's equation) (39)6

Equation (39) may be solved for D. Then

D 2
x,_ ----q -- T (40)

u. = (2q)_ D (41_

and

where/9 is computed from Eq. (39)

(37)

(42)

10

_. = (2q)_'b

_ (2q_,) _'
D _

q +--_-

(43)

D. Cartesian to Classical Coordinates Transformation

Given the inertial coordinates X,Y,Z and velocity
components 2_,_',Z as a function of tired for either an

elliptic, hyperbolic, or parabolic orbit, the problem is to
find a, e, i, fl, _, and At = t - T, where the last six
quantities are defined as in Section IV-C.

Given the vis-viva integral

V_ = t_ (--_ - +) (44)

there follows for the semimajor axis of the conic

_,R
a-

2_ -/iv _

where

R = (X _ + y2 + Z_)V,

(45)

The eccentricity e of the conic is given by the standard
formula

e = (1 - "_--)_ (46)

where p is the semilatus rectum (see Eq. 476, Section X-B).

Now p is given by the formula (see Appendix B)

h' "h' h 2

where h is the angular-momentum vector per unit mass
and h = Ih 1. Because h is in the direction of the vector
R × v, the components of h are as follows: ..............

Sino_

h,= Y_-z_

h,,= Zi_- X_

h, = xf - r.'.x

h' = a, v' - (R. v)'
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one obtains

t_ v_ - (R" vy
p - (47)

By use of Eq. (44), Eq. (47) becomes

p=R(2 -R) (R'v)_ (48)

Substitution of this expression for p into Eq. (46) yields

e=[].+ a \a -2 + ( )'0. _ (49)

Figure 7 shows the orbit of a spacecraft. On this figure,
it should be notedAthAat AWj_s normal tp the orbital plane.
The unit vectors N, P, U, M, Q, and V are in the orbital

plane and

A A A A A A

N ± M,P ± Q,U ± V

where _ = R/R. From the definition of h, and from

Fig. 7, it follows that

h h

= = T (50)

SPACECRAFT

Fig. 7. Orbit of a spaceCraft

JPL TECHNICAL MEMORD.NDUM 33.451

Now it can easily be seen that the inclination of the orbital

plane to the reference plane is

t = cos-_(W,)

Hence,

i = cos-* (_-_), 0deg < i < 180deg (51)

^
The unit vector N along the line of the ascending node

is given by its components

Wv

N, = - (W_ + W_) _

W_

N_ = (W_ + W_) _

N_= 0

The longitude _ of the ascending node is, therefore,

_/Nv\
a = tan- k"_"_ ) ' 0 deg < O < 360 deg (52)

The unit vector _, which points in the direction o_ the

spacecraft, is given by

R
R

To determine <o(the argument of perifocus), the argu-

ment of the latitude u0 and the^true a_omaly v are needed

(Le., uo is the angle between N and U and v is the angle

bAetweenAP and U). To compute uo, the right-hand set for

W and N is completed by the cross product

Since

and

A
U * _ = cos (90 --uo) = sin uo

itfollows that

A ^

06 _ _--COS Wo

0 deg < Uo < 360 deg (53)

11
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The argument of perffocus is, of course, not defined for

e = 0; in this case, let v = uo.

If e _ 0, one obtains from the general equation of a
conic

, R- P
1 + ecosv

The argument of perifoeus is then obtained as

,_ _ u_ -- ,,, 0 < _ _.<2,, (s_)

where uo and v ..re given by Eqs. (53) and (56), respec-
tively.

The vector v _ given by

A h
the expression v = R+ V + R U

P Hence,
e cos v -- l

R

and, hence,

cos v = "-E - 1 (54)

Direct differentiation of Eq. (.54) with v and R as
variables yields

1 pi_ l_/v\ _"
sinv=7_=e _Y) (55)

because

w = (R,_),

From E_. (54) and (55), it follows that

where h may be computed by differentiating

R 2 = RR = X _ + y2 + Z _ (57)

^ ! _
V = _-Tv- _-_ u (59)

Because h = R _ _, one obtains from Eq. (59)

R fi
'_ = _-,, - .;;a t_

_"_v R
n -"h-

The vector I_ is then given by

= COSv L_ -- sin v (_o)

and, hence,

_ = sinv_ + cosv_ (61)

It remains to determine At, which is the epoch time

minus the time of perifocal passage. The computation of
this quantity depends 1.,pon the type of conic described.

If I/a > 0, then the orbit is an ellipse or a cireJe. If the
orbit is a eircle (e = 0), then ,_ = 0 and 2 is taken as

the time of nodal passage, which is given by

to obtain At = u-----L_° (62)

If the orbit is an ellipse, the eccentric anomaly E is
given by

so that

= . = . aha
h x_c+ r_. z'2 "_ ,, E tan-'(a - a)(_)"a = (e,3)

12 ,IPL TECHNICAL..M£MORANDUM 33,451



Kepler's equation is

M = E - e sin E

where

M = mean anomaly

(see Eqs. 16 and 17). Hence,

M

&t-'=-

where M is given by Eq. (64).

(65)

Equation (63) is obtained from the standard equations

for the eecentric anomaly (Ref. 4, p. 118):

and noting that

sin E =

cos E =

(1 - e_')_' sin v
I -_ _,, COS v

C + COSy

1 + ecos,

Then

7)

a

1sin v =
/?

.t,/t )cos,= ektt-1

(see Eq. 55)

(see Eq. 54)

sine (1 - eD_'sin,
-- = tan E -=
c_'sE e _ c_r

(' ')P R a'

Rf_a

(a - a) (_)+'

Thus,

- R)(t_a)'+J
(_)

If 1/a < 0, +,he orbit is hyperbolic. The mean anomaly

of a hyperbola is

with

&l_ = e sinh F - F (see Eq. 30)

Mn = n _'t

or

__(_y'
M. \_-__-_+/ at

tb)' definition of n, the mean motion; see Eq. 10). Hence,

Mn

(07)

The eccentric anomaly F of a hyperbola may be com-

puted as shown |_,low. From Eq. (_),

sinh F
-a (,_+- l)v'

R sin_,

I. 7(e' - t)]"

- [._(e'-_ l)l"

(÷)+'
,; ,)(++ + 7 \++ ,(-h,)_

J#L TECHNICAL MEMORANDUM 33-d$1
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because, for a hyperbola,

a --1

p e _ - 1

(see Eq. 476, Section X-B) Thus,

when tile spacecraft is on the point of leaving the gravi-

tational influence of that planet. Although an infinite

number of escape trajectories (all hyperbolas) can have

the same excess-velocity vector, only a portion are prac-
ticable when related to existing launch sites and boost-
vehicle constraints.

and, therefore,

or

sinh F -
e(-

R/_f-

F = sinh -x L e 1

= sinh -l B

r -=log + (n: + 1)"]

by use of a well-known identity for inverse hyperbohc
functions, where

R - (69)
¢' 1 -a/d _

In ca:il I

1

O

The following assumptions are made to obtain the

solution of the escape phase of motion:

(1) The spacecraft is acted upon only by the gravita-

tional force of the launch planet.

(2) The oblateness effects of the launch planet are dis-
regarded,

The direction of the asymptote of the escape hyperbola

is found by normalizing the hyperbolic excess-velocity

vector V,,. The injection energy C3 of the escape hyperbola

is found by squaring the hyperbolic excess speed, or

C, = (7.))

where V, :_ ! V= I (see Eqs. 481-48,3. Section X-B).

,ks previously stated, not all of the infinite numlx, r of

c_cape trajectories are practicable. Two of the practical

aspt_:ts of a set of trajectories are the size and shape of

the hyperbol_. Size is basically determined by C_ (which,

in turn, is a function of the boost-vehicle capability).

the orbit is considered parabolic From Eq. (39), one
obtains

ql) D'
,_t- !#),s ÷ 6(_)-----_ (Barkt.rs :quatioff) t70)

where

(')D ----_(2q)" tan _ (71)

E. Psoudo-Asymplote and A_ym[Jtote Coordinates Io
Cartesian Coordinates Transformation _

The hyp_,rbol]c exc_ss.veloc,:ty ve_or 'f,_ at launch is

important ;._ecause it tells the direx:ticm in wi_ich the

spa¢'e<raft must be traveling _elative to the launch planet

"l]ie shape of the hyperbola is determined oy its
etx, entricity, which is a functit, n of both C_ and the

iwrifocal distance aceordPJg to

where

e- 1 -, R, C_..._, (73)
/A

Rp - pc'rif(_:al distance

# -- GM "-: universal gravitational constant times mass

of launch planet

Equaticu (73) may be derived as described beio,s.

From the general equation of a c_onie

'Rt4eler_ce 5. R :,: P
I L.ec_.
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there follows for the perifocal distance Rp (v = 0) NORTH POLE

or, to solve for e,

and because

P
RP=I+ e

= a(1 - e) (74)

ap

o=l----
a

a

(see Eq. 481, Section X-B). Since for a hyperbola, a < 0,

Eq. (73) follows.

From Eq. (73) it can Ix, seen that, for a fixed Rp, the

eccentricity increases linearly with the energy.

Therefore, both the size and the shape are essentially

determined by the energy alone, which is obtained from

Eq. (72).

Given the size and shape of the escape hyperbola, its

planar orientation must be determined. This can be done

by consideration of two vectors: (I)the direction of tl_e
hyIx, rbolic-excess vector, denoted by the unit vector _,
and (2) a u.it vector Rt, dir(_:ted from the center of the

launch planet to the launch site. The flight plane of

the spacecra/t will essentially be determined by these

tw._ vt_:tors, as is shown in Fig. 8.

If the !aunch date and flight time of a mission are

speeifi_l, the Itscending asymptote vector S as well

the energy C',, of the near.earth t_nic Ix_,ome know.

luantities (C_ is actually twice the energy per unit mass;

i,e,, the vis.:4va integral). "Flats follows from the fact that

the four defining quantities of an interplanetary (or lunar)

traj..x_tory are lauza:h date, right ascension and declination

of the ascending t,symptote, and C_, If it i" assumed that

the overall mission has I_n speciiied, tSen S and C_ are

constants of the prGblem.

JPL tECHNICAL MEMORANDUM 33-45i

Fig. 8. Spacecraft flight plane

The problem of transforming pseudo-asymptote and

asymptote coordinates to Cartesian coordinates may be
fortnulated as described below. Given

Z,.= azimuth of launch

,I,L---latitudeoflaunch site

R = injectionradius

r = flight.pathangle (Fig.9)

C_ =cnergy per unitmass atlaunch

O_ = rightascensionof ascending asymptote

,l_s= declinationof asccnding asymptote

t_= GM = gravitationalcomtant of launch planet

itisdesiredto compute

R --(X,Y,Z)= radiusvectorat injection

V = (X,_',7.)=velocityvectorat injection

From Fig. 8,itisreadilyfound that

!,Vs = cos i

= sin I;_, cos 4,L (75)
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/
OUTGCING /

(ASCENDING)

ASYMPTOTE

/
INCH /

PLANET /

/
/

Yw

CONIC

(DIRECTIONOF PERIFOCU'S)

Fig. 9. Launch geometry

where

XL = azimuth of launch

4,,. = latitude of launch site

It should be recalled that S points in the direction of the
hyperbolic excess-velocity vector; hence, 8 points in the
direction of ttle ascending asymptote.

A

Thus, tile unit vector S may be represented by

A ^ A A

$ = Sxl + S_J + SzK (76)

AAA

where lJ,K are unit vectors in the X,Y,Z directions, re-
spectively.

Equation (76) may be rewritten as

_ = cos Os cos ¢,,_ + sin e, cos 4,, _ + sin ,._ _

= (Sx,Sr,S_) (77)

where

A

Os = right ascension of S
A

em= declination of S

la

Equation (77) follows directly from inspection of Fig. 8.

^

Now S is in the orbital plane; thus,

A ^
W.S=O

A_O,

A A
W.W=I

Hence,

Wz Sx + Wr Sr + Wz Sz = 0

w_ + w_, + w_ = 1
(78)

The system of equations represented by Eq. (78) may
be solved simultaneously to yield

W}-

-wz s,,sz __+sx (1 - s i - wl) _

s_ + s_

--Wz sin es sin ei,s _ cos ®s (cos 2 ¢s -- W_) w
cOS Cs

(79)

- (Wr Sr + Wz Sz)
W_ = S_ (80)

where Sx,Sr,Sz are given by Eq. (77) (Ref. 6, p. 5).

The injection velocity is givenby

o ,,,,
where R is the injection radius. Equation (81) follows
directly from the vis-viva integral (Eq. 44).

The (unit) angular momentum h is computed as follows:

h = IR Xv[ = RvcosP (8.2) ............

where F is the flight-path angle (Figs. 9 and 10).

The ecceota-icity of a conic is
i
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5:

v_k_

IR-_'u

RR = VELOCITY COMPONENT

OF R AT RIGHT ANGLE

TO RADIUS VECTOR R

[_p = VELOCITY COMPONENT

OF I_ PARALLEL TO

RADIUS VECTOR R

Fig. 10. The flight-path angle I _

Because

(pt,) v"= h

and

a

it follows that

h_C__v.e= 1+-'7]

Fig. 11. The radivs vector Rm_
ii x_d

R_ (Fig. 11), which is a "pseudo-asymptote" (e.g., R_x
may be the vector from earth to moon). Then, from
Eq. (85), one has for vm_,

P_ cos -1 (88)

where_Rm_x = IR_ I'

Case 2: e > 1. The tralectory is a hyperbola, and the

true anomaly (at injection) is computed horn

sin I" = e sin (v - F), -90 deg _<v - F _< 90 deg

(83) (87)

Case 1:0 < e < 1. The trajectory is an ellipse, and the
semilatus rectum p is given by

p = _ (e2 - 1) (84)

The true anomaly v is computed from the basic formula
of a conic

Hence,

R--= P
1 4-eeosv

0 deg< v < 180 deg (85)

An cUipse does not have a, asymptote. To enable use of
the energy concept even in this ease, the quantity v,-. =
maximum true anomaly is defined as the angle between
P (a vector Iminting toward perigee) and a given radius

so that

/ sin F \

_= r + sin-' _-T- ) (88)

A derivation of Eq. (87) is given at the end of this section.

To obtain v,,.,, one should consider Eq. (85); i.e.,

(.T)1
= oo$-1 e

Letting R--* _, one finds that

v.,_ = cos-' ( - +), 90 dog < v., _< 180 deg

(89)

_r

4

J
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The radius vector to injection may now be computed,
and it is as follows (see Fig. 9):

A A A

R -- a [cos(v_,_- v)s + s x w sin(,_,. -- v)] (90)

The velocity vector is then given by

A

R + sin r (91)

(see Fig. 9).

To derive the equation sin P = e sin (v- r), one
observes that the angular-momentum vector h is given by

h=RXh=RXv

Thus,

h = Ihl = iRXhl- IRllRlsina

= Rvs +

= Rv cos _ (92)

(see Eq. 82). Now

thus,

h - h_¢ = R X R -- R X (RR + II,.) =

^
= R"; W

From Eqs. (92) and (93), one obtains

(93)

Because

R_¢,= Rv cos I"

,.,= [(a0' + (h),]-

(94)

Eq. (94) may be rewritten as

a,; = a [(a0' + (fi),]- cosr

or

a; = [(a0' + (h),]- cos r

18

so that

But

h

and because

]. = [t + _ k-T//

dR

cos 1p (95)

R- P
1 "Jr- ecosv

one obtains

dR pe sin v Re sin v /_

dv (1 + e cos v)_ 1 + e cos v --

Substitution of Eq. (96) into Eq. (95) yields

E ( esinv vq_,1= l+ l+ecosv] / cosI _

(1 + 2e cos v + e_)_
= COS 1-'

1 + ecos_

or

(96)

cos_ -

Hence,

1 + ecosv

(1 + 2e cos v + e_)v'
(97)

e sin v
sinF = (1 - cos_ 1")_*= (1 + 2ecos v + e2)_'

From Eqs. (97) and (98), one obtains

and so

or

sin r e sin v

c_r I + ecosv

sin F + e sin 1_ cos v = e sin vcos ITM

sin F = e sin (, - F)

(98)
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V. Rotations of Coordinate Systems

The fundamental coordinate system for reference of

the equations of motion is the Cartesian frame formed by
the earth mean equator and equinox of 1950.0--the Julian

ephemeris date (JED) 2433282.423; the position of the

mean eq_aator of the earth and the ascending node of the

mean orbit of the sun on that equator, taken at the

beginning of the Besselian year 1950, serve as the defini-

tion. The X-axis is directed along the node, the Z-axis

northward above the equator, and the Y-axis in a direction

to complete the usual right-handed coordinate system.

A. Earth-Related Transformations

The direction of the rotational axis of the earth is not

fixed in space. The actions of the sun and the moon on

the equatorial bulge cause variations in the orientation

of the equatorial plane, whereas the perturbative effects

of the planets produce a variation in the eeliptie. Once

a fundamental inertial reference system is specified, it
would be sufficient to tabulate the direction cosines of

the rotational axis to the coordinate axes. The problem

is not treated in this way for historical and practical
reasons.

In practice, the motions of the ecliptic avd equator

are both explicitly computed as a matter of observational

necessity. Furthermore, the long-term motions that can

be treated as though they are secular (precession) are

separated from the short-period motions (nutation). The

fictitious equator, ecliptic, and equinox, which are defined

as being represented by the precessional motions only,

are called mean; those affected by both precession and
nutation are called true. Values fixed at the time corre-

sponding to a fundamental reference are values at the

epoch, whereas those referring to instantaneous moments

are.the values of date.

B. Rotation From Mean Earth Equator of 1950.O to

Mean EquatOr of Date

The rates of precessional motions (general, planetary,

lunisolar, in right ascension, and in declination) must be

distinguished from both the accumulated amounts of the
motions over an extended interval of time and the con-

sequent displacements of the coordinate systems produced

by precessional motions.

The amount of the precession in right ascension during

the interval from to to t is (¢0 + Z), where (90 deg - ¢0)

is the right ascension of the ascending node of the mean

equator at time t ou the mean equator of to reckoned

from the mean equinox of to, and (90 deg + Z) is the
right ascension of the node reckoned from the mean

equinox of t.

The amount of the precession in declination is the incli-

nation 0 of the mean equator at time t to the mean equator

of to (in what follows, to = 1950.0). Thus, the general preces-

sion of the terrestrial equator and the consequent retro-

grade motion of the equinox on the ecliptic may be

represented by a rotation matrix A. Obtained by com-

posing three rotations, matrix A rotates the mean equator

of 1950.0 to the mean equator of date. 6

The first rotation (Fig. 12) is about the Z-axis from the

mean equinox of 1950.0 to the ascending node of

the mean equator of date on the mean equator of 1950.0,

with the matrix of rotation given by

A1

COS(90 -- ¢o) sin (90 -- ¢0) 0_:)-sin (90 -- _o) cos (90 - ¢o)

0 0

oo.,oi)
= _-oS_O sin_o0

(99)

The second rotation is about the X"-axis through the

angle 0 (Fig. 13), where the matrix of rotation is

(! 0 0/Aa = cos # sin 0 (100)

-- sin 8 eos O/

The third rotation is a left-handed rotation about the

Z'.axis to the mean equinox of date (Fig. 14). The matrix
for this rotation is

A3

cos (90 deg + Z)

sin (90 d;g + Z)

-sin(OOdeg+Z) O_

cos (90 deg + Z)

0

(_s,nz_cosz!)= cos Z - sin Z

0 0

(lOi)

"Witt, J. W., ]PL internal document, Oct. 20, 1968.
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1950
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MEAN EQUATOR OF
DATE

Y

MEAN EQUATOR
OF 1950.0

Z I Z II

_8"_ EQUATORIAL PLAN E OF

,._//__.,. / t -"4 M_-EAN EQUATORIAL

_ PLANEOF 1950 0

q_1950 X"LINE OF NODES

Fig. 13. RotatiOnabout X"-axis

Fig. 12. Mean equator of 1950.0
to mean equator of date

Z I Z"

_/'_'_ MEAN EQUATORIAL

X '__'/" _ MEAN EQUATORIAL

qSMEAN OF OATE PLANE OF 1950.0

Fig. 14. Rotation about Z'-axi$
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The rotation from the mean equator of 1950.0 to the mean equator of date is then obtained by composing the three

rotations to yield the precession-rotation matrix

(-sinZsin¢o + eosZeosOeos¢o) (-_:'nZcosCo - eosZcos0sinCo) (-cosZsin#)_

A = AaA2A1 = _ (eosZsinCo + sin Z cos O cos Co) (cos Z cos Co -- sinZcos0sin¢o) (-sinZsin0)) (102)

\ (sin 0eosCo) (-- sin0sin¢o) (cos0) /

The angles Co, #, and Z arc

¢o = 2304'.'952 T + 0':3022 T 2 + 0":0180 T 3

# = 2004'.'257 T - 0"/4268 T 2 - 0"/0418 T S

Z = 2304'.'952 T + 1':0951 T 2 + 0":0188 T _

where T is measured from 1950.0 in tropical centuries,

T

To-2433282.423357

36524.21988

where To is the Julian date of the epoeh in ephemeris
time.

By use of the conversion factor

36525 Julian century
Q=36524.21988 ' tropical century (103)

the coefficients for ¢o, 0, and Z may be converted so that

T is measured in Julian centm'ies from 1950.0. Multipli-

cation of the converted coefficients for to, #, and Z by
another conversion factor

0.1745329251994329 tad
O' = , (104)

360 arc-sec

yields coefficients for ¢o, 0, and Z in radians:

Co=a_T+blT 2+ctT a )

# = a2T + b_T _ + c=T _

Z = a_T + b3T 3 + c_T 3

(105)

Given the julian date of an epoch To (in ephemeris time),

the T required in Eqs. (105) is

T

To-2433282.423357

36525

in Julian centuries past 1950.0 E.T.

The time derivatives of to, #, and Z are computed from

Eq. (105): s

_o = al + 2bit + 3cxT 2, rad/Julian century

= a_ + 2b2T + 3caT _, rad/Julian century

= a s + 2bsT + 3c_T 2, tad/Julian century

The time derivative J, of the matrix A is given by

_ Aij = ._j, i,] = 1,2,3

where

•J,, = -cos ¢o(d_ sin Z + da) - d3 sin Cocos Z

A_2 = sin _o(d_ sln Z + d2) - da cos to cos Z

A_a = Z sin 0 sin Z - 0 cos 0 cos Z

A_ = cos ¢o(da cos Z - d,) - d_ sin to sin Z

•_a = -sin ¢o(dl cos Z - d.) - d3 cos to sin Z

A23 = - Z sin Ocos Z - # cos 0 sin Z

•_3t = 0 cos to cos 0 - _o sin _ sin #

•_32 = - 0sin Cocos # - _ocos Co sin 0

3,,.= - sinO

(lO6)

(107)

7Given by Khatib, A. R., JPL Internal document, Jan. 10, 1969.
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where

d, = (2 cos8 ÷ Go)

d2 = _ sin 0 cos Z

d_ = (_ ÷ L eose)

d, = _ sin $ sin Z

Eaeh component of A is divided by 0.315576 × 10*° s/
eentury to yield the amount in radians per second.

The primed and unprimed coordinate sets are then
related to each other by

(x)(x)yt -- A Y

Z' Z

=A +i r
Z Z

(lO8)

C. Mean Obliquity of the Ecliptic and Its Time Derivative

The mean obliquity of the ecliptic _ is the angle be-
tween the mean equatorial plane of the earth and the
eeliptie plane (Fig. 15), and is computed from the follow-
ing expression:'

--- 84404('84 -- 40.850 T, - 0.0034 T_ ÷ 0.0018 T**

(109)

where TI is _e number of tropical centuries past 1950.0,

T 1

To - 2433282.423357

36524.21988

where To is the Julian date of the epoch in ephemeris
time.

'Khatib, A. It., JPL internal document, Jan. I0, 1909.
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. ..:.:,.":

__ EARTH ECLIPTIC

(MEAN OF DATE)

Fig. 15. Mean obliquity of the ecliptic _"

If it is desired to obtain _ in radians, use may be made
of the conversion factor Q' (see Eq. 104). Then

in radians, so that

A = 84404'.'84 Q'

B = -46'.'850 Q'

C = - 0'.'0034 Q'

D = 0'0018 Q'

= A ÷ BT + CT z + DT s

The time derivative of _ is then

(110)

E_
B + 2CT + 3DT _

3(35_ >K86400 (111)

in radians per second.

D. Earth Mean or True Equatorial Coordinates to
Ecliptic Coordinates ROtation

Let it b" a._sumed that the X-Y plane is the mean or true
equator of the earth, with the X-axis in the direction of

the mean or true vernal equinox. "flae ecliptic coordinate
system (X',Y',Z') is obtained by rotating about the X-axis

JPL TECHNICAL MEMORANDUM 33.451
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v_

z

_../Jf ECLIPTIC PLANE QF

X _ _ MEAN OR TRUEEQUATQR QF EARTH
, X _ J _ MEAN QR TRI.

Fig. 16. True or mean obliquity

by the angle E or e--the mean or true obliquity (Fig. 16).

The rotation matrix, denoted by K, is then

(! 0 0/K = cos 8 sin # (112)

- sin 0 cos 8 /

where

e = e or _" (113)

Then

(i o o)I_ = - _ sin 0 - cos

cos 8 sin

(114)

where

The two coordinate sets are related by K and /_ as

follows:

(*)Y' = K

Z'

(115)

K ÷g (118i
/ /

Z'/

JPL TECHNICAL MEMORANDUM 33-451

Thus, a position vector r in the unprimed system becomes

r'--- y' = K = Kr (117)

Zp

and a velocity vector i- in the unprimed system becomes

i-'= _, =_-_ K

\ P

=Kr +K_

(i-l] (,/
z/

(118)

E. Mean Earth Equarm end Equinox of Date Coordinates

to True Earth Equator and Equinox of Date
Coordinates Rotations

Nutation represents the difference between the position

of the true celestial pole (rotational axis of the earth) and

the mean celestial pole. Because it is entirely composed

of the short-period effects caused by the actions of sun

and moon Qn the figure of the earth, nutation affects only

the equatorial plane, nQt the ecliptic. For this reason, it is

most convenient to apply nutation to eclipse coordinates,

in which the vernal equinox is shifted from its mean posi-

tion in the mean ecliptic of date to its true position, which

is in the same plane. That is, the true ecliptic of date is

also the mean ecliptic of date. The true equator of date

differs from the mean equator of date by two increments:

(1) 8¢ = nutation in longitude, which is the true longi-
tude of date of the mean equinox of date.

(2) 8e = nutation in obliquity

The mean obliquity of the ecliptic is defined as

_vhere ¢ is the true obliquity of tL_. c,Alptie.

The transformation o£ Cartesian position and velocity

coordinates from the mean earth equator and equLaox of

date to the true earth equator and equinox of date

requires three rotations.

The XY-plane is the plane of the mean eqoator of the
earth, with the X.axis in the direction of the me_.n vernal

equinox. The relation between the true earth equatorial

coordinate system (X',Y';7_/) and the mean earth equa-
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X t

z_lz'

_l //_ MEAN EQUATOR OF EARTH

// .///.- .y,

T EQUATOR OF EARTH

i t X, ¢P MEAN OF DATE
¢P TRUEOF DATE

Fig. 17. Mean and true equinox of date

torial coordinate; system (X,Y,Z) is shown in Fig. 17. The

nutation in longitude 8¢ is measured from the true

vernal equinox at the X'-axis to the mean vernal equinox

at the X-axis. To rotate from the mean equator and

equinox of date to the true equator and equinox of date,

one first rotates from the mean equator to the ecliptic
about the X-axis with

A

A negative rotation of the r<_ult through the nutation in
longitude about the Z-axis to the true vernal equinox is

accomplished by

B (cos +.in +!)
si08¢ cos0 8¢

A negative rotation about the X'-axis to the true equator

is obtained by application of the matrix

C (i 0 0/cos _ -sin e

sin e cns •/

Thus, the primed and unprimed coordinate systems are
related by

(*)(i 0 0/ .... , :<.,cosE sin_ Z'

--sin_ cos _/

(119)

t

where the primed system corresponds to the true equator and equinox of date and the unprimed system corresponds
tc the mean equator and equinox of date. If one lets N = CBA, then t°

(cos 8¢)

N = (sin 8¢ cos •) (cos

(sin 89 sin •) (cos

The time derivative of N; d(N)ldt = IN, is

/V(1,1) =

/_/(1,2)=

N(1,3) =

--

D(2,2)=

/_(1,3) =

N(3,1) --
t

N(3,2) =

/V(3,3) =

t°Warner, M. R.,et al., ]PL internal document, Oct.

24

(-sin 8¢ cosZ)

8¢cos •cos_ + sinesin_)

8¢ sin•cosE - cos•sin'S)

( --sin8¢ sinE) 1

(cos 8¢ cos • sin_ - sin • cos'_) I

(cos 8¢ sin • sin _ + cos • cos _) .J

(120)

given by

-8¢ sin 8¢

_sin 8¢ sin _ -- 8_ cos 8¢ cos

-_'sin _ cos • -- 8¢ cos 8¢ sin F

-- _ sin 8¢ sin • -4- 8_ cos _k cos •

d, sin_cos • + d, sin _'cos • - &_ cos • cos _'sin _0

d, sin _sin • - d, cos _'cos • - &_ cos • sin _'sin

sin &/Jcos _ + _ sin • cos 8¢

d, sin _'sin • - d, cos • cos _ - 8_ sin • cos • sin 8¢

"-dt cos • sin _ - d_ cos _'sin • - 8,7/.*in • sin _ sin 8¢

80, 1968.

i

i

t
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whel'e

d, =" e - i cos 8¢.

d., i "-= -- ecosS$

Therefore, the position and velocity coordinates in ti_e

true equator and equinox of date reference _:ystem (the

l'rimed system) are obtained as follows:

(x)(,)Y' = N Y

7, Z

(121)

and

Y, --N _ g" _"

_' / z

(1'99)

F. Rotation Transforming Earth-Centered True Equatorial

of Date, Space-Fixed Coordinates to Earth-Fixed
Coordinates

The XY-plane i_ tile plane of the tru,. equat,)r of the
eartL, with the X-axis in the direction of the trut' vernal

equinox. The earth-fixed otmrdinate system (X'Y'Z')
is obtained by rotation al)out thv Z-axis by the augle

y(T), which is the Greev,,vieh hour angle (GHA) (Fig. 18).

The two coordinate syste:ns are relate(.| to each other

by the rotation matrix E. given by

(--TT i)E = -sin 7(T ) cos)(T} ([I'Z3)

0 0

The time derivative of E Is

0

Therefore, E and 1_ relate the two t_x)rdinate sets as

follows:

x)(x)T' = E yZ' Z

(l_i}

X #,/

ql

Z,Z'

Y

'_- PRIMF (GI|tNWICH)

tW[_I0tAN Of Dtl tAIIH

Fig. 18. Prime meridian of the earth

_.llid

(")i"' :E _i_: 1"

_, _. z
(12(J)

The (,rt'em),ich hour a,gh, _,(1'), _hieh is dethw,.l as

the angle |)('twe,.n the vernal e(|ullm'¢ o| the earth mid

the Greet|wi(,h meridian (Fig, 19). is given by

y(T): yjt(T) _ _ (127_

8¢. (_ G

= nutation in right asct.nsion

|¢ _ ntitatiun in lut,gittah., (Fig. 20)

( - true obliquity M eclipqie

y=(T _ --- Greenwich hour angle of tin'an equinox of date

ys(T) is given by (see lk'[. 2, p. 75)

y_(T) - UTI ._' 23925"_._ '.8640184"5.1'2Tt .'(PO_2_T _,

(128)

where T, is the number of Julian centurh_ of ._,52,5 d_tys

M universal time since 1'2 h, January 0. Iqfl0 liT.

J
It
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Fig. 19. Greenwich hour angle

_o

-
/;,-3,__, ...4

Fig. 20, Nulation In longitude,

true and mean obliquity

UTI is givt'n b)"

UTI: t'T- (ET, AI)- (A,I [-,'TI) (1'29)

where ET is the num|m'r of epi..me,_ seconds elapsed

since 0 h ephvu.,ril time on tl.. current day rand
(ET A.]) and (A.] ('T]) are time trans|orinatiom
(see _'¢_ion ill-E}.

Because yz(T) is usually cl_ir,_| in radiam, the terms

o11 the right side o( E(t, (]'28_ must he converted into
radlan_ Tt&s tonversion is dh.tt,xl as folks's;

in radiam, where

I _

A - _._'2.5,'&_ !

/3 --86.t01g1'542 !

c :- 0'0_291

0.01741&_'2_2.51.9_1329
(130_

26

in radians divided by ephemeris seconds. The conversion
factor f is determined as f_llows:

I deg :: 0.017453292519943-x3

24 h = 24 X 3600 s = 3'K} deg

=- 360 X 0.01745329'251994329

in radians; thus,

360 x 0.017453:.x32519943_ 0 017453=x32519943._
! = 24 x 3¢,oo = 240

in radians divided by t'phemeris st_xmds. Given the

Julian datt. of an elmch T_ in seconds past January 1.
19511, 0 h UTI, T_ may Ix' ¢_tnputtxl as follows: tt

T,, - 2415020
T_ _ 365_

where 24150'-'_0 is the Julian date of 1'2 h, January 0,
1909 UT.

An t'quivah',t rxprrssion h,r UI'I in Eq. (1'221i i_

UT!- T_2,, (131)

in radiam, whi,r,, T: IT,,- 0.5] dtx, imal part (ReI. 7.
p. 37,), Th,'r,'fort,, tiw GilA in radlans it

y(T)- ['TI ' A ' BI', " {'TI " _c'o_t

The d,'riv_tive of -/(T; with resi_x't to ephemeri.q time i_,
_Iven hy

,_(TI, "),,{T) _ _t.m. i_ sin. (l&'1

In ratlian's divi(h_l by epherm,ris set.omh, where "_.(T_

_,{T,. -_(i-, 86401M'542 ' _18"58 T')._0.36,.5.2,5,,,'1

(134)

in radiaus dtvkh_l by eph,.meris s4_mds,

',Wm'n_, 14 R., el ,I., IPL _ d_ctmm_. Oct..10, 19_1.
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From Eq. (1_), and from Eqs. (4) and (6), it follows
*,hat

dUTI ._£,. _....
_ET-" : I ÷ 9,192,631,77C - g - 2ht (135)

where t is the number of seconds past the start of the
ti,ue block containing the given parameters f, g, and h.

G. Mars-Related Transformation1,

For purposes of defir, ir, g Mars-related coordinate sys-

tems, tour reference planes are chosen:

(1) Meau equator of date,

(2) True equator of date,

(3) Mean orbit d date.

(4) True orbit o[ date,

The reft,rence ¢lirt,ttita_s art, the ascending node of the

orbit on the equator (both mean or Imth true) and the

intersvt_ion ot the Martian prime meridian with the true

equator, The f_)rmt,r is calh_l the Martian (verual) equinox

of date (mean or trut,), and the angle Ixq_ta, n the prime

meridian and the true tsiuinox of date is called the "M _rs

Imur angle" (see Ref. 2. p, 334-_35, for the definition of

the prime meridian of Mars).

Five coordinate syste,,s t_ result;

(1) Mean eqt, inox and orbit of date.

(2) glean equil_'J_ and equator d date.

(3) True _luinox "l.nd orbit d date.

(4) True equino_ and equator of date (Slmt'e.fixrd).

{51 Prime meridian and true equator ot date (hod)'.
6xed).

Only the pre(,r_sion (therefore, only the mean equator/of

Mars is well known at present, Until nutation is also well

known (and, with it, the true equator), the mean and trt_

equator_l will be considered coincident; zhe, etore, the

'_WIH. _+W. )PL knlml dmum,P.M,(k¢. 10, 19_I.

JPL TECHNICAl, MIMORANOUM lJ-4$1

mean and true equinoxes are the same. Beeattse of tiffs

fact, it suffices to comider only three coordinate systems:

(1) glean (=true) equinox and orbit of date.

(2) Mean (=true) equinox and equator of date (space-
Rxed).

(3) Prime meridian and equator of date (body-fixed).

The Martian equator :nd equinox are shown in Fig. Ol.

The elements of the mean orbit of date with respect

to the ecliptic and mean equinox of date (see Ref. 2,

p. 113) are given by

N"= 48047'11719 + 2775757 T - 07005 T= - 070192 T +

(136)

_= I°51'01720 - 2"430 T _+0'XN54 T J (137)

where T is tlw numlwr of Julian centuries of 3t3,525

ephemt'ris days elapst,d since 1900, January O, 12 h E.T.

(]D 2415@_.0),

Tht, adoptt-d p<rsiti., of the north lmh . of Mars _' is

1,62024
a -: 316.55 ' -- T (138)2411

12528

l = 52;83 + _. T {139)

' 'glmlil,. A.R., JPL Internal doL'ument,,Jan. I0. 191_I.

Fill. 21+ Martian equato_ and equinox
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/

where

cLj = right ascension and declination of pole with

respect to mean earth equator and equinox of
date

T --- number of tropical centuries past 1905.0

These angles are used for both tile mean and true Martian

equators because tile nutation is unknown at present.

With the above angles, it is now possible to locate the

mean (= true) equinox for Mars. First the auxiliary

angles x, y, and z are computed (consider file spherical

triangle shown in Fig. 0.2). Then, from spherical trigo-

nometry,

sin x sin _"

sit, (.90 + a) - sin z

or

sitazsin r :: sill _'cos u

Sill Z, t_-)S ].'

Also,

(140)

cos (90 4 a) sits ii - sits (90 -_-u) cos _i c_s i"

= -sail ti sail l-i - cos ri cos 17 cos T (141)

t_ : - t_s (90 _ a) cos _i + sin (_ !- a) sits 17cos i"

= -sits u cos i_ + t_i ti sits i$ t_ _ (142)

sill-i" lift y

sin z sitl l'i

hetlt_,

|till z lin i/- llni'sin

IlnzcosV --- eol_Sll!(90 t

(1¢3)

= _ fl tm a , sin [} sin a t_ i" {Pt)

TI.,n T _ computed from

i'_ T-. t'os 1180

sin { lliO

Iln [190

1$

¢x 7Jlt_ll_- (_ _-,q0-.-l)l

(x 7Jl

(v'9o ._)iemz

%

Q

Fig. 22. Spherical triangle !

or

cos_'-- cos (x -7) sin (y - 8) + sin (x -]) cos (y - 8) cos z

(145)

where I" is in tile first quadrant.

Another necessary angle is the arc between the ascend-

ing node of the Martian equator on the mean equator of

earth and the Martian vernal equinox &-f-180 dog;

(Fig. °9,']) is obtaiuc_d from hvo additional equations,

sin _ iiii z

sin ItS0 - (x -_)1 s!,,7

Ht'llCe,

sinl'siu ii :- s_n ;siii (i - 7) (14t7)

sin?cos., = cos [1_ -(x -i)l siia [90-- ill- I)]

-- siu IiSO (x - L')I t_ [,9O - (V - _)] :osz

or

sin I cos ,l .... cos _x -- i) cos (i - ii)

+ sin (x - i) sin (!/ - 8) cos z (147)

The t'ltlll; of ,l allay thi.n be c_oniputi,d {rOllS Eql. (146)
and (147).

"I_lt, hour Ingle of the nz, an eqi.lltox d Mars t' is given
by

V = 149.-i75 , .350.89 1902 (ID --- 14111322.0) (1481

wh.re "2,418,322.0 is the lullan dilte ot 0 h, January l.'i. lqOt

These lire Ill o# the llnlle_ nect_sary to per|or',l the

required rolitiom.

i*Khotib, A. It, JF1LIntniil doele M, Jim, I0, lIOl.

Ill, liCHNICAJ, MIMOIANDUM 31-411
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Fig. 23. Spherical triangle 2

I. Rotation matrices for position vectors. If t|:e three

coordinate systems listed above Eq. (1_]0) are denoted

by (X+, Y+, Z,), i = I, 2, 3, tile rotation from body-fixed

to space-fixed coordinates is then

(x)(+ssn0)(x)Z+Y_ " Sio V
n cos V 0 Y_

0 1 Z_

or, ill vrctor notatioz£,

i.e,, a left-handed rotation about the spin axis, Then the

rotation to the mean ( = true) equinox and orbit of date is

Y_) =

\ Zl/

or, in vector notation,

cos I si Y2

-- sinT cosT/ Z_

(150)

rl = Rrr.+ (151)

The rotation from the space-fixed system to the 1950,0

earth-equatorial system _5 is given by

Y = ArRaR+R, Y2

or, in vector notation,

re -= R+.re (149) whrre

(i.+2)

r,_ _ ArR+R+R,r= (153)

A : ,_.n'cession-rotatio. matrix (set. Eq, 102)

sin (.X '0 l_Odt,_) tx_ (.X O_180(h,_) sin.Xo

!(_

0

Ii,

o o1( oo)- -- t"os 4t'(_ (90 (h'e _) ,tin (90 tick a) sip a

,tin 190 d_,t; a) ('o_ (.qod,t,g 4) t'_.,; il sinJ

,i. (qO,h,_ ._ txM (_(h _ ctl _ tma sinu

o 0 0 0
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2. Rotation matrices for velodty vectors. From Eq.

(149), it follows immediately that

where

V" = 350.891962 deg/day

From Eq. (15i),

where

where

(from Eq. 148)

eosV -sinV 0 0 -
' =? 0 -si.7

0 . Rz

.-' \o

cos

-sin

(156)

From Eq. (153),

_o = ArR_R_R,/", ÷ (_,T R+ R-.R, ÷ Ar tl+R_ R, ÷ .A'rR+fi, R, ÷ Ar R+R_. fi,) r_ (157)

where

= dt.rivativ¢, of prcccssitm matrix (see Eq. 107)

-cosu sin tx O /
- sill a - cos a 0

0 0 0

(158)

O 0 0 1

fi, _ 0 cosa ._in8

0 - sin _ cm _ /

(159)

The derivatives of the various angles in Eqs. (156)
through (160) are obtaintxl as dcscribed bdow. From

Eqs. (I'3S) anti (139),

1.6202,4 . . ,
& - '2_ "degltr°iueat century

__: 12.5'2,8
_600 dt, g/tropical century

From Eqs. (1:_) and (137),

- '2775.57 1

sin A cos A 0 _ 3000 ,'_t.525 deg/day
!t_- _ -.emh sina 0 ) (160) :- --2,430

1
0 0 0 1: _0 ,_525 (]('gf(]_l_"

i.)iflvrvntiation of Eq, (145) yields

-_'sin T - (_ i) [eos (x. 7) cm (¥ .... a) - ._in (x - '_)sin (_/ - $) cm zl

+ (_-_)[-sin(x-7)_in(y 8) ' cm(x 7)cm(y_-$)cm.:.]

_ [-sin(z +.-'t) em (s, _ 8)sin :1

Equati,m ( 161 ) may then be solved |m' 7.

(161)

!
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Differentiation of Eq. (146) gives

;_ sinlcos a = - IcosI-sina + _coszsin(x -i-)

+ (_ - _) sin z cos (x -/_ (162)

and Eq. (162) may be solved for 2x.

From Eq. (142),

-_sinz = _ [-cos_sin _ sinct - cos _ cos a]

+ _ [cos _'cos _ cos a + sin _ sin a]

- _ [sin _'sin _ cos _x] (16:3)

where _ is given by Eq. (111).

From Eq. (140),

sin z cos x = - _ cos z sin x - &sin _siu a + _cos _cos a

(164)

Fronl Eq. (148),

sin :, cos y = - _,cos z sin y * _ sin _'cos _] + _'cos_'sin [i

Thus, Eq_. (16,3_ through (165) yield ". _, and _.

H. Moon-Related Transformatlans

l"i_ure 24 illustrates tht, g_)lllt'tr_,' of the lunar equator

and orbit, and dt, fiiws the reqtKrtxl anglt_. The angle 11

on the int, an ecliptic of tilt, earth lx, twcen the mean

kqIAN kO_ OCt|¢T
I /

IV_A_ L_,JA/I / j

\

."o T',_.,.

\
_'-- _ '._1_ !_I,1_

Fig. 24. @.u_,arequator and orbit

vernal equinox of the earth and the mean hmar equator

is given in Ref. 2 (p. 107) as

f_ = 933,059'.'79 - 6,962,911'.'23 T -" 7'.'48 T _ + 0':008 T _

(166)

where, by use of the factor Q' (see Eq. 104),

Q' = 4.8481368.1 × 10 -_,
rad

are-sPc
(167)

the above coeEicients may be converted into radians.

In Eq. (166), and in all following equations, T is the num-

ber of Julian centuries (86,525 ephemeris days) elapsed

since 12 h__January 0, 1900 E.T., Julian date 2415020.

The angle of inclination I of the mean lunar equator

to the mean eeliptic of the earth is given in Ref. 2

(p. 108) as

= 1o_:1 (168)

By use of Eq, (167), I may I_, converted into radians.

Tilt,m,,an longitude of the moon ( is measured in the

ecliptic from the mean equinox of date to the nit,an

ascending node of the lunar orbit, and tlwn along tile

orbit (Fig..o5). The quantity { is deriv_! from lunar

theory, and is given as a polynomial in time (see lle[. 2,

p. 107):

¢= 97:L56_.t'99 _ 1.7:]'2,564.:379t':]1 T - 4"08 T: + O'.'(X_T'

(169)

Another liuantity nt'eth'tl istile mean longitude of the

lunar perigee l", which is nwasured in the ecliptic from

the mean t.qainox of date to tile mean _et, mling node

of thr lunar orbit, and tht,n along tile orbit. Tilt, quantity
I" is given in l)ef. 2 (p. 107) as

:" ' ' T ' T'!'* ' _l]r3,586t'40 r 14,648,5,2:5'2 T-37:'17 .- 0.'045

(170)

By me of I_ i, (167), the ¢o_lBcients of Eqs. (16g) and
(1701 may txe c_nvt, rt_l into radians.

Perturbations in the mean value_ 11, i, and ( are th_

physical lil)r,tkms ,_, ft. and r, re_peet_vely, that ms. the

'1
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_,_:AN

LUNAR

f.- \
EARTH

/
\ /

- \
h_AN EQUINOX

OF DATE

ECLIPTIC

ASCF,NOING NOOt

Fig. 25. The orbit of the moon relative to earth

a_ual angle of inclination and the angle l_twcen tile mean

vernal equinox and the descending mxle of tile lunar

equator on the ecliptic are l +p and fl _ a, respectively,
and the angular distance from the descending node of

the hmar equator to the prime meridian is [180 deg
_ ( _ * ,) - l, + ,,)1."

The physical libratitms (as oppost.d to the optical libra-
tiom) an, the resuhs of the moon In, ing a triaxial ellipsoid

and not a sphere; the longest diameter is direettxl toward

the earth and the shortest along the axis of rotation.

The libratiom in node, im'lination, aml longitude a, p,

and r are compuh.-d from the following equations: _"

al --- i, - 100'.'7 ._in (g) " 'g3:'8 sin (g ' _,_

- 1070 sin (2g _'-20) (171a)

p = .-98'.'5cm (g) :_ _3:'9cm ('g, *- 20)

- ll:1)coa(2g + _,w)

r = - 16':9 sin (g) + 91'.'7 sin (ga) - 15':3 sin (20)

+ 18'.'7 sin (flq 8983813 + 217q6812 T) (171e)

where

g = _ - Y" = mean anomaly of moon

= P - t2 = argument oL.perigee of moon

g_ = mean anomaly of sun _s

= 1,290,518':04 + 129,596,579710 T

- 0'.'54 T _ - 07012 T 3 (172)

If it is assumed that the coefficients of Eqs. (166) and

(168) through (172) have been converted into radians by
using Eq. (167), then

t') = A_ + B_ T -*-C_ T 2 .._.D_ _r_ (178a)

= A_ + B.. T + C2 T: + D_ T J (173b)

F' = A_ -'- B3 T + C_ T -_+ D_ T" (173e)

gt = A, -_ B, T + C, T= + D, T" (178d)

al = lr + B_ sin (g) -_- C., sin (g -¢- 20) + D._ sin (2g + 2w)

(17_e)

p = B_ cos (g) -_ C, cos (g -¢- 20) + D_ sin (2g + 20)

r : ,4, sin (g) + Br sin (g') + C, sin (20)

(173D

, D;sin(E: _ FrT) (173g)

in r r'_!;iillS, al|d so t'

::, B, _ 2Ct T _ _D,T _
f (174a)

f (174b)

f, = B,' 2C, T + _D,] '_
j (174c)

(171b_ i¢_ = B. -' 2C.T - 3D°T _

,'_¢'#lrr_f. M R . t't "al ,/PI, internal do¢,mw'nt, trkt. :10. I_al

t Kh._tih. A. B. JPi, :_emal documem, Jan. I0, I_'1. '°Win. ]. W, IPL intettml docnmem, Oct. 20. 196._.
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in radians per second, where

f = (36,525 days/century) (86,400 s/day) = 8,155,760,000 s/century

Also, 1_

M = I_ + _ [B_ cos (g) + C_ cos (g + 2(0) + 2D_ cos (2g + 2_,)] + 2t; [C, cos (g + 2w) + D5 cos (2g + 2¢0)]

b "= g [ - B_ sin (g) - C_ sin (g + 2_) + 2D6 cos (2g + 2t_)] + 2_ [ - C_ sin (g + 2(0) + D6 cos (2g + 2(_)]

Fr
=Ar _ cos (g) + B7 _' cos (gl) + 2Cr_ cos (2o,) " 3155760000 Dr cos (Er + F,T)

(175a)

(175b)

(175e)

in radians per second, where

i178)

Hence, to perform the rotation through the descending

node of the lunar equator on the ecliptic, the angle fl + e

and its derivative arc used. To perform the rotation

through the inclination of the hmar equator to tile

ecliptic, the angle I + p and its derivative are used. A

rotation from the descending node of the lunar equator to

the prime mt.ridiau may be performed by using tim third

angle [180deg + (¢ + r) - (fl + a)] and its derivative.

I. Rotation Frnm Earth Mean Ecliptic to Moon True

Equator Coordinate Systetfl

In what follows, a 8 .'<8 rotation matrix and its time

derivative will be computed. This matrix transform_

Cartesian position and velocity components expressed in

an earth Illeilil ecliptic and equinox of date coordinate

s)'stcm to components expressed in a moon true equator

and eq'|inox of date coordinate system.

The XY-plane is the mean ecliptic of the earth, with

the X.axis in the direction of the mean _-_'luinox of date.
Figure 26 illustrates the relation between the earth mean

ecliptic coordinate system (X.Y,Z) and the moon true

equatorial coordinatE, system (X', Y', Z'). Let

a --- fl -'-. (1TT)

I*Kt,,Itib, A. B., JPL internal document, J_n. 10, 1969.
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Then

_=5+_ (179)

#=]+_ (180)

where Q, a, I, p, t_, _, I, and _ are obtained from Eqs.

(168), (171), (178), (174), and (175).

A rotation about the Z-axis through the angle a moves

the X-axis from the mean equinox of date of the earth to

the descending node of the true lunar equator on the

ecliptic. The matrix of rotation M_ is then

cos a sin a 0 /
M, = --sina cos a 0

0 0 1

Z Z'

TRUE LUNAR _

MEAN LUNAg "__

PLANE OF \\ _ _ MEAN ECLIPT_L

LUN_ rlul_ \ \,

EQuAtOR --X_, _ / yoft_rN

/', !,\

Fill, 26. I_arth mean ecliptic and moon true

equatorial coordinate systems
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A negative rotation about the X'-axis through the

angle 3 moves the X'Y'-plane to the true lunar equator

of date; i.e., space-fixed. The matrix of rotation M._ is

1 0 0 /
0 cos/3 - sin/3

0 sin/3 cos a

Let

that is,

M= /

bl = M.oMl

cos a sin a 0

)--cosfl sina cos/3 cosa --sin#

--sin3 sina sin�3 eosct cosfl

(181)

Then

I -_sin ct
(--_eos 3cos a + 3 sin flsin a)_

( -- _ sin43 eos a --/_ sin _ cos/3)

&cos a 0

(-/_ sin/3 cos a - aeosBsin a) -3 cos3

(-&sinBsin a + boos/3 eosa) --/_ sin fl

(189.)

The rotation matrices M and 1_1relate the primed and
unprimed coordinate systems as follows:

(x,)Y" = M

Z'

(i)';" = M + it

\ z'
(x)Y

Z

(lSa)

(184)

J. Rotation From Moon True Equator and Equinox of
Date Coofdiflatei to M6on-lqxed Coordinates

The transformation of Cartesian position and velocity

components, expressed in a moon true equator and lunar

equinox of date coordinate system, to components ex-

pressed in a moon-fixed coordinate system is achieved
by one rotation. Figure 27 illustratt, the relation between

the moon true equator coordinate system (X, Y, Z), where

the XY-plane is the plane of the true lunar equator with
the X-axis pointing in the direction of the true lunar

equinox, and the moon-fixed coordinate system (X',Y',Z').

A rotation about the Z.axis through the _,ngle y {'t is
defined in Fig. 27 I, moves the X.axis from the true lunar

34

equinox to the lunar prime meridian on the true lunar
equator. The matrix of rotation B is

cos 7 sin _ 0 /
B = -sin _ cos -/ 0 (185)

0 0 1

Z_ Z '

r = ((* r) - (_t.cr) .l_d_

, TRUf LUNAI_ [QL_TOR

f "_---PIII_ M_RIDIA_ OF MOON

Fill. 27. Spate- and body-fixed lun:lr coordinates
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t

Tile time derivative of B is

- sin -/ cos Y 0 /
/3 -- 3; -cos-/ -sin-/ 0 (186)

0 0 0

Rotation matrices B and/3 relate the t_,,o coordinate sys-
tems as follows:

(*/(*)Y' = B Y

Z' Z

_"- =B

(187)

(x)+/3 Y (188)

Z

Vh Translation of Centers

It may be assumed that the positions and velocities of

the planet are available (e.g., from an ephemeris tape)

in the earth equatorial 1950.0 system. At a change in

center (e.g., during integration}, the position and velocity

of the spacecraft in 1950.0 coordinates, relative to the old

center of integration, are incremented by tile position and

velocity, respectively, at file old center relative to the

new center (Fig. 28). Tile translated position vector is
then

r'----r - r., (189)

and the translated velocity vector is given by

i_ = _ - ba (190)

SPACECRAFT
A

j/ ,

.c/ .,.
OLD CINTE! 'd l_II_ CIN}'ll

Fig. 28. l_ranslation of centers

The same change of centers is employed when it is

necessary to transform the initial-condition coordinates

to the integration center that is to be used at the start of

the trajectory.

VII. Equations of Motion of a Spacecraft

This section describes the differential equations of

motion of spacecraft that are integrated numerically in

a rectangular coordinate system to give the spacecraft

ephemeris with E.T. as the independent variable. The

X-axis is directed along the mean equinox of 1950.0; the

Z-axis is normal to the mean earth equator of 1950.0,

directed north; and the Y-axis completes the right-handed

system. The center nf integration is located at the center
of mass of the sun, the moon, or one of the nine planets.

It may be specified as one of these bodies or it may be

allowed to change as the spacecraft passes through the

sphere of influence of a planet (relative to the sun) or

file moon (relative to the earth). In this case, the center

of integration will be tile body within whose sphere of

influence the spacecraft lies. At a change in the center of

integration, the position and velocity of the spacecraft
relative to the old center of !ntegration are incremented

by the position and velocity, respective!y, of tile old

center relative to the new center. The injection position
and velocity components may be referred to any body

(not necessarily tile center of integration; see Section

VII-D). The injection epoch m_y be specified in tile UT1,
A.1, or E.T. time scales and must be transformed to

ephemeris seconds past Jan. 1, 1950, 0_.

The acceleration of the spacecraft consists of.

(1) Newtonian pointmass acceleration relative to the

center of integration

(2)Direct oblate acceleration caused by a nearby

planet or proximity of tile earth and the moon.

Acceleration caused by solar radiation pressure and

low-thru,=t acceleration forces, such as operation of

the attituc_e-eontrol system and gas leaks.

Accelera'cion caused by motor bums, (A motor burn

of short dur,mon or a spring separation may b_,

represented alternatively as a discontinuity of the

spacecraft traiectory.)

(5) Aecel,.,ration caused by indirect oblateness.

(6)Acceleration caused by general relativity.

L
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Thus_

r +  tOBLI + (SRe,

+ (MB) + (IoBr ) + (GR) (191)

where

/a c --

r=

]['iC =

rip

acceleration of spacecraft

gravitational constant of the center of integration,
kind/see

gravitational constant of body i, krnVs _-

position of spacecraft relative to center of inte-

gration in 1950.0 earS. t, equatorial rectangular
coordinates

position of body i relative to center of integra-
tion in 1950.0 rectangular coordinates

position of spacecraft relative to body i in 1950.0
rectangular coordinates.

It may be assumed that the precomputed position and
velocity ephemerides for the celestial bodies within the

solar system are available. These consist of the helio-

centric ephemerides of eight planets and the earth-moon

barycenter and the geocentric lunar ephemeris. The

heliocentric ephemerides (with the exception of those for

Mercury and Nepttme) are obtained from a separate

numerical integration for each body, with epoch values

chosen to obtain a least-squares fit to source positions.
The _ource positions, which represent astronomical obser-
vations, are obtained from an evaluation of certain

gen_'ral perturbation theorics for the four inner planets;

from a simultaneous integration of the equations of
motion of the five outer planets (corrected for the motion
of the inner planL.ts); and from an evaluation of the

Brown ilnp.'oved hlnar theory (tlcf. 8, pp. 374-,_75). The

acceleration caused by each perturbing body is computed
from either the source position or the position from the

fitted ephemeri', for the perturbing body (if previously

computed). The ephemerides for Mercury, Neptune, and

the moon are obtained directly from the source positions,

with vclot.ity obtained by numerical differentiation (see
Ref. 7, p. 24).

/It. Newtonian Point-Mass Acceleration

1. Cent,,, of mass and int;arlable plane. Newton's law
of universal gravat.,tion states that

36

k2nl_m.:

F_2 - 1192)
r_2

that is, two bodies attract each other with a-force FI.._

directly proportional to their masses m_,m2 arLd inversely
proportional to the square of the distance between ther_
r,,., where one defines

r12 = I rl -- r2 l

(hence, ra: = r_). The constant of gravitation is defined

as k 2. This constant is defined as equal to Gm, which is

the product of the universal gravitational constant and
the first mass. This is done because k can be determined

to much greater accuracy than can G. It should be noted

that m._ is actually (despite its denotation) the mass ratio

of mJm_; that is, m_ is normalized _-ith respect to m_
(see ReL 4, p. 33).

From Fig. 29 it is easy to see that the force in the x

direction between bodies one and two i:: given by

F,,, = Fig cos ,,_= F_ x2 - x_ (193)
rt,,

where

Using Eq. (192), one can write

k_lntmz x__ - xt

FI_, - r_,j rl2

v2

|L

FI2 '¢

.I
/

T

w 1 _,

Fig. 29. A system of bodies in an
inertial coordinate frame
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or

k-'ll! till ,.

F,;, - , (x: x,) (194)
T b.

In exactly the same manner, tile component of attr_c-
tion between body one and body n m the x-direction is
derived as

k_!1| t Ill

F,,, - _ (x, - x,)
rim

so that file total force on body one in the x-direction

caused by n bodies is

Ft, -= I,'_., 4- .... _, F,,,

or

Xi -- X tFit _- k= HltlI| 1

1=2 rt)

It follows that the force in tile x.direction upon an

arbitrary body i with mass m, is

El, = k: _ Illtlll I

r 0

By Newton's second law,

So

d"x_ " (xj - xi)

m,--d-F. = k= m, _ m, r;5"

Similarly,

m,--d-F, = k_m, __, mj
J:t ri I

and

d:z, (z, - z.,)
l'l|i _ = kZllli g=d I"1/1t 3

I=_ l'jj

JPL T£CHNICAL MEMORANDUM 33.451

Hence, in vector notation,

d:r. _., lr, r
m, dt: k: m, /.. m (1951

j t fh')

th, rt, the .,ummation excludes j :-i, and this case wiU
automatically be excluded from future sunm,ations where

it s¥ould result in the vanishing of a denominator. For a

complete solutioa of this so-called .-t_ly problem, 6n
colts|ants o£ integration are needed; actually, only 10 ,re
known.

When all of the equations _f the form of Eq. (195) are
added, the terms on the right side cancel, yielding

Tiffs equation may be integrated at once to give

£m,r, -= at -_ b (196)

wht, re a and b are constant vectors. This means that the

cent,'r of mass (c.n_ of the _)'stem moves, with respect

to the (inertial) system of reference, in a straight line with

c_o|tstant speed. Tht. origin can, therefore, Ix, set at
the e.m.; thuu

and Eq. (195) remains valid.

Mult_.pllcation o£ Eq. (195_ vector|ally by el X, and

addition of the resulting n equations, yields (since all

terms on the right sido cancel)

£m_r_Xri =O

or, hy integration,

tt

:E × ;, = h
I=1

where h is a constant vector.

The plane through the c.m., perpendietdar to h, is

called the in,_riable plane of the system. Care must be

used when one applies this plane rigorously to a physieal

37
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_y_tem. The angular-:nonwntlml integral (Eq. 197) is the

result of the absence of external forces acting on the

system, and it expresse_ the fact that the total angular

nlolnclltt|lll O_ tile sy';celn is constant; this is made up n[

the _ng'alar mome:,tum arising from orbital revolutioi_
snd f,'om axial _otations. If all of the bodies are u:tcon-

nccttx[, rigid, ._phcrkal b_xli_, who.se concentric layers
i, re ho,no_,..t_ms, then the axial rotations will remaia

colv,t_.i,t, as will the orbital angular mom..ntu,n. In this

,+.,st', the system will have an invariabL, plane perl_,ndi-
cub_' to the orbital angular-momel:tum vector. If the_e

_Jnditions do not hold, however, precessional movenwnts
and the effects of tidal friction will result in an inter-

change between the orbital and rotational parts of the

total angular momentum, and the invariable plane defined
by h in Eq. (197_ will not be constant. B_'canse tilt,

._nditions very nearly hold for a planetary system, it is

jr,stifled in practice to speak of the ir,¢ariable plane of

the solar systcn:; its element_ are, approximately, _! --- 107

deg and s _- 1 deg, 35 rain _Ref 9, p. LN)6L

2. Force function. If the force function of the syste._l

tt (see Ref. 9, p. 206) is defined by

then

,'x, L., i r,, .j

(x, - xp!= -k_m, _i1 """"--7""--
1.'_ ril

Therefore, Eq. (195) can be rewritten as

m, F_ --. V, U (l°/J)

W_tt'r(_

T,"i.--" + + .---

3. Tran,qer of origbl and perturbhig force#. Let it be

supposed, as is the case with the sun in the solar system,

that one mass (say, m.) is dominant. If the origin is

transferred to m., and the position vector of m_ with

respect to m. is _, then

P_
Ft =r I ra

38

The r,; elements art, not affected, and ,:/,.'..r', --_ ,':/?x,, etc

t Ill,1_ - k:m. k:
) - t r.,

--- k"nl. _ --fill " [?*

j t r,_

So

r:
V,U = "-',U', -- k:m,m, -7_.," .

Also, from the txluation of motion of m,.

I['_ =

a-t r,_ -" r)
k"

r_

Tilt' t_luation of motion of m, is

1
r,' r.- i:,-_'_,U

or

J _-Ii

.t r_ 1
"" _ k2_m/ , "- 7,t:' - _'-,,,,m, r._',_rl./

Removal of the ii_ term in the summation on the left

side yields

'" k' r, "-' r_r, _ m, _'mr-' -' k" _ m_ ""i- =
rt_ _=t r.l

or, ff the primes are dropped (stnc.,e the transfer to the

new origin is complete, and this can be done without

ambig.ity),

r, "- k_(m. + m,)_r_, = ,U' - k' m_

(_
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Now if

R,, .... k*( 1 r,,r,),

then

(le;,_ . j;;nb rj
m, V,/_,, = k' V. X77/ _.

and

. - t rj•-, F v, C'"'"" - k,E,,,,--
,,, V, R,, = m--7__, \ r,--_/ ,., r;.

l • t i., I

= _,., V, U' - k_ "' r;.

Combi.ation of rids result with Eq, (200) yields

It-I

.. , r, ,5..'] _' /_,: ('201)r, + k: (m. ! ,.,) _ - ,., ,.. ,
/ _

The (_uations rt'presentrd t))" E: t, (201) are funda-

mental If the R,j terms art, zero, that leaves the eqnatiun

of motion of two lmdies; thrrefore, it is the R,j terms that

cause the departures (or iwrturludiogLs) from Keph'rian

motion; they art, called lwrturbative fuactiom, Equation

('201) may by n'written

"'( )I:. + k'(m. _ m,) .--r. _m, --. --
r,. ,:. ,;, r}.'

(m2)

or

r_ /-t rjj rl_

('20,3)

The first tt'rms on the right aide of Eq, ('20"2) are d_e

dirt'ct attractiom on m, caused by the pcrturb;.g btKlit_;
the second terms are the indirect terms. If the ith body

k" identifit'd with the sDtctx'raft, emd it is noted that

m. -r m. -- m. [hence, k' (m. -1-nh) ,_ k*.h, = _,.]. it can

then easily Ix _een fllat Eq. (_3) is ,._luivalent to the

first term of the rigi,_, ddt, of ER. (191).

B, Accelerafic)n Caused by ah Oul.Tte Body

This section drvdops exprt'ssiom for tJ,, acx,vh.ration

of a spacecraft produced by a nottspherieal eentr.! hod)'.

The equatorial bulge of a plam't or tile moon is rt_po,.

sible for a deformation in the gravitational field of that

planet or moon from that which _ouid Ix,prodmvd by

a Ix)int mass or spherical sy,mm, trical bt_ly, Thes(' &'-

formatiom, which are eslw_.ially imlx)rtant near the sur-

face of tilt, body, produce compicuous la'lturbatit)ns in the

orbits of iow-altitmh, spactx, raft, Thus, a. sspherical or

nons)'mnwtrie body producvs a Imace.trai forint, fit'ld,

It it is dt_ired to write the equatiol_ of motion of a

spacet_raft in a noucvntral {oK,t, field, all asp|wrical

potential must Ix, determined, The gent,ralized potential

runt/don U J'' for a planet or the moon, which a!lows the

derivation of the direct acceleration of a spacecraft by

the oblateness of a nonspherical body, is given b)

L 1{r._ V' 1" P"
7 ' "==" , . (,in q_)(C,,m cos mx + S,., sin rex) (_04)

mr.l _,-0 J

where The associated Legendre function P_ is defined as

r, ,_, A =

ap -_-

P_ (sin _,) =

Ca,at, Sa._ ---

gravitatiop'.al cor.stant of body, kmVs a

body-centered (planet or moon) radiu._,

latitude, and longitude (positive east of

prime meridian) of spacecraft

mean equatorial radius of body (an

adopted constant us_1 for U)

associated Legendre function et first kind

(the argument sin _ will be omitted here)

numerical coefficients (t_.gseral harmonic

and seetorial harmonic coefficients)

JPL TECHNICAL MEMORANDUM 33-451

where P. is the Legendre polynomial of degree n in sin _. r_

The zonal harmonic coefficient I. is defi_aed as
V

/, = -(2.,. ,,
i

_°Adopted by the International Astronomical Union in 1961 (Ref. ,: -

]0,.o. _).
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Equation (_-_4) ma_ be svrittca ia three tt'rms--_,orrc-

stmmling to tilt' poteatial of a poiat mass, zoaal harmonics,

tt.sst,ral Dud se<'toriai harl,ao,fics (see tlcf. 7, p, 27_--i,,
tilt' {orm

r r ._ \r/

"7 I. (C.. tx_s .u_, + S... sm m.O
.. I_|

widl each term defined as

U _ U=--, tS il) "- (c.s)
r

Bccause tile coettlcients are obtained front satellite orbit

ohservatioas, the center of coordinates is takea as the

d._**a||tical c,m. of the particular lxKly; in this cast,, the llrst-
degree (.:: 1) hari|ioiik.s art, z_,ro. Therefore, the stun.

mat|tin over . in Eq. (_J.5) beg._ with :2, At the present
time, hari||onits art, known only for the earth and the

naam. these have been deteri|iim,d up to a "_ 8, m 8.

It should lw nott_l, however, that the saluc,s of the higher-

degree ctwtGcie|its art' very uitcertain, evrn as to the sign

of the value (see Ih'f. 10, p, 2!, The ordt,r o| raagnituth, of

th,' tt_seral harmonics for the earth is appz.)ximately 10 ".

The inertial 'wtvh'ratio,i of the spae_x:raft is co|,|puted
in a recta,lgular Ca_t,rdinate system (x',y',:.'), with the

Y-axis dirccted outward .d,uig the instantaneous radiu_

to the spacecraft, the y'-axis directed east, and the ;'-axis
dirt,t.ted north, as shown in Fig. ,30,

PRIME

%

z' _b

|QUATORIAL

P LAI_

Fig. 30. Reclatlgular co6fdinaie systsm axes x', y', an4

z' relative to body-fixed axes xb,y_,z_

4O

Fig,Lre S0 shows these axes r_lative to body-fixcd axes

xs,_s,:_, where x_ is alo||g tile iatt'rs_x'ticn of the pri|ne
met|diDo aml ,'.quator o_ th.. body, =_ is dirtx't.xl north

along the axis of rotation :d the tMxly, and ,;_ comph.tcs

the right-ha,|de0 sys'em.The tramfi:rmatioa fi_,m l_xl.v-

tix_xi cta)rdinates _ :- (x'_,y_,:_) to r' : i/.y',:') c'_)rdi|iatcs

is given by

r' it r_

_v|iere

- sin _ tx_s A sin _ sin A t,t_ _.l

The position of the si_cecrMt relativc to tiw hxly it1

rectangular coordiaates, r,,fi'rred to the meal, earth cqtw-

tot and equinox of 1950 0, is given by r _- r,, where r is

the position o_ the spactx.raft relative to rite ccnter of

intcgration in 19_).() earth equatorial rectangular t_-

ordinatcs and r, is the i_sjtion o| |axl)" i rclative to the

et'ntt.r of integration is) 19",0,0 rectangular coordinatcs.

Tiw traz|sfor|nation o_ thtac im,rtial eoordinatcs to

I.aly-flxed t_ordiuates r_ is defined as

r. T'(r r,) (20_

where T is the tratmfor,uation matrix that rotates from

|x,dy-flxed ..xmrdii|ates to the mean earth eqaator and

equinox of 19.50,0 (T is actu.,lly a pnxluct of rotation

matrices wherein each factor h..g been specified in Sec-
tion V). For instance, rotation from *lars.flxtxl (_)rdi-

nares to the mean earth equatoc and equinox of 1950.0

req.in,s the following product to be formed:

T = ArNrR_R,R_R_

where ea:,h matrix appearing in the prtxlu¢_ is dc,scri_x,d
in Sections V_B, -E, and -G.

The overall tramformation from r - r, to r' is thus

r' ---G(r - r,) = RTr(r - r,)

and the inverse transformation is

r -- r, = TR r r' = Grr '

JPL rECHIV_CAL MEMORANDUM 33.451
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If tlw [x_dy-fixcd _'t_rdi'_ates iron, Eq. (_-_8) art, used.

trigonomctric tuncti .... ; _f qb and A are given by

Z_

r

cosqb
g

Y_
sin A --

(x_-;-y_)"

X6
C¢_A --

A,x expression will 1_' develolad for the inertial aecel-
eratiou (i.e., a_x.eleration with r,rsptx.t to the mean earth

equator and equinox of 1959,0 coordinate system) of a

spacecraft caused by oblateness of any body, with rec-

tangular con qxments along tile instantaneous directions

of tilt, x', 7', "' axes, denoted by '_'. This aeceh, ration can

la, hroken doxvn int- i_'(1) ca_,s_xl hy zonal harmonics and

'/-'(C.S) caused h). tesseral harmonics. With these terms,

the coutrihution to the si_acecraft acceleration _: relative

to the eent,.r of integration in earth equatorial ret.tangu-

lar c_)rdinah._ caus_xi by the ohlatencss of a'o" lxxly is

"t:(t)Bl.) Gr'_ '

= t;: {i'J_ , "_'iC.S)}

it shoukl ix" noted that F' do_,s not represent the c_)m-

lXmeats of the ac-cleration relative to the rotating

(x',y',:'! coordiuat,. :,'st:m. but simply the ¢_ml.xmcuts

c,f the im, rtiai accclccatiou i: takcu ahmg the ilxstau-

taileoil_ .1,a.y',_, ' ax¢.'$.

The c'omponeuts of _:' art, computtxl from

?U

cr

I 71."

Y" -- r CXXs ¢_ f'A

1 _'I:
_.

r :)'e

wht.n, the Ix)int-mass t,.rm of [ r, which l_as been ac-

eounh'd for in Section VII_A. is here ignored.

Tilt' catr)ing out of tht_e dertvativea yields

_:'il) T _,1" L .-cos,

__(, + 1)/'_'{C._,.cosm,_ _ S,..,sinat_} 1

mo t 4L cos6P. {C,.,,eos n_, S,.,,sin,_} J

(2O8)

where, for practical computations, n_ and n_ must be

predetermined.

Legendre polynomials, which appear in Eqs. (R07) and

(_08), gre "nice" functions in the sense that they can be

defined recursively. Thus, the nth Legendre polynomial

P. is computc_ from

_.n- l si n (.._)P.
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starthlg with Po = 1 and P_ = sin q_. The first deri'vative

of P, _ ith respect to sin _, denoted P_,, is given by

P'= sin¢, P,__ + nP,.,

starting with Pi = 1.

The function see _ P_ is computed by first generating

see q_P,_ = (gin - 1) cos ¢ [see _ P,__ ]
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starting _ith sec _ pt = 1, and then generating

2. -- I_sill
wc + V;," \37--_./ , [sty,, P;, ]

.n.,-m --I ) [see, P2.:]II " In

For each value o[ m between 1 and th, . is varied

from m + 1 to n,, Tile gunrral term P_ is zero ff b > a.

Tile function o_s # P_". where 1'_" is tilt. derivative of
P._ with rt_pect to Sill O. [3 _'omputtxl from

cOS ¢ P." --- -. sin, [ set' # P_'] . (. --- m) isle: ¢ P.". ]

C. Acceleration Caused by Solar Radiation Pressure and

Operation of Atlilwde-Contrcd Sy_lem

A nongravitationM .force ttmt acts ulmn a sp_ceCxMt is
the pressure of the radiation from the sun. l[ ] is tile

inteitsity o|' the solar radiatit,.--i,e, the energy of the ra-

diation (ill ergs) [allilig lx'r st.t.nd on all area of I (alp
peq_t'mlieular to the direction of the radiation--and c is

the velocity o[ light (in ctp/sL tit+,"prt_sure P tin dy,|/cm'_

('xerted on a completely al_sorbing _urfat_, ts given by

!
/' -- 1"2(*))

V

Equation (_)9) is derivtxl from Eil_tein"s relatiomtfip

co,lcvrniug the t'quivalen(.'c o[ n;ass and enerc,.v: a mass

M is equivahmt to euerg'.." Me:. if 31 is tile mass of radia-

tion photons falling on a unit area ill a unit time, then

the energy is equivalent to l; thus, ] := 31c'. Because

phtJtons travel at the sl_.cd oil light, theiz IllOlllelltUlll is

equal to Me, and hence to 1/¢. If the photons of total

mass M art, absor|Rxt by unit area in urdt time, the rate

o[ chauge of mqqllelltunl--i.e., tile force per unit area,

which is eqt, al to the pr_3sure/"--is thus ]/c. For a per-

fect refill, tar of the radiation, the ratc of change of

momentum is _/c beeatzse the photol,s strike the surface

with InOlxlelitum J/C aud art. reflected with equal lllO-

inentunl ill tilt. oplx_.dte direction; thus. P :-: 2J/c if tht,

surfaet, is a l_:rfvct reflrctot.

At 1 AU, the order of n:agnitud,, of the prt,ssurt, is

approximately IO" g./om: for a highly reties, tire surface

exl_,St,d to the sun (lief, II, p. 77l.The solar pressure
aeccltration for Mariner IV was 2,2 _ lO * cm/s + at

injection {Rt'f, 1:2, p, 8),

The acceh.r_ti,., of a spa,'ccraft from solar radiation

prt,ssurv aitd sm,dl t.rt,,s t_.(,h _i gas h.aks frmn th+,

attit,ide txmtrt,I s_stt'm, IIOl_qarai)],:,,t P,ttitudt,-tsmtrol jets,
t te.) is representt,d I)y _t

F{S/iV,AG} = FiSO(V) ' i:(AC_

^ ^
= iv(sin,), u,, + v(Acl • u,d _+ + tv (sm'_ • ._. _ v(ac). ,_'i _"

+ [F(SRP). _* _. F(AC) • '_*l @* (210;

or

^ i, . {.)¢.v (saP,at) ---(v,, u,,)i_,, + f6 • + (',_

where

c,A,_ ;
i_+ = [a -_-b (t - Tat.,) + e {t- TWO'] [u (t - T.,e,) - u (t - T.,c+)] -_-._a + _ [( + G' (&EPS) + AG] u* (t - Tsar)

(zt2)

_tWarner, M. R., et al., JPL internal document, Oft. 30, 1908.
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or, for the' c_mpot_t, nts,

"_,, = [a, - b,(t- T,c,)-- c,(t - Tt_,)'][u(t- T,,, u(t- T,,,)]

clA,

-,- aa, -_ /u.mr---f[(;' _ G', (-'.. EPS) -_ ._¢_;.] u'(t - "/'.,_e)

F_. -- [., -. b,(t- T.,) + e.(t - T,,,)q [u(t - T.,) -- ,,(t - T,,.;)]

c:A_
.xa,. -_-m-..- [G, -r G_ t_-EPS) -+ aG,] u* (t - r,,,)

Fl, r'jt,

_,_ = [a. - b, (t - r.,) -- c.(t - T.,, ,)-'1 [u(t - T.-t) - u(t - T,,;!]

-)- Aa v _
III r _p

-- _[G, .... C, (Z.Et:,) + .XG,] u*(t - T.,,r)

The terms in thest, equations art. dt.fint.d as follows:

A

A
X*

a unit vt.ctu) dirtwttxl from sun to

sp,,ceer_t (sp,tcvcraft roll axis)

a unit vector in Sl_wceralt _ X-axis

direvtiou (spat.cvralt pitt.h axis)

_" a u,it vt't_or ill sihwtx'ra|t _ ]l'-

axis diwt.tion (spacveralt yaw axis)

A ^
for._ a right-handt.d orthogonal.

spacecraft.fixed v(mrcliu_te systetm

(wlu're i _ r.x.y) =_-solve- for t,o-
eihcients of hm'-ihrust aeceh, ration

polynor dais. km/sL km/s _, km/s'

t = ephemeris time

T,, ,.T_,, -*

u (t - T,, ,) =

Aa = (_a,,_a,.Aa_) =

¢,pochs at which attitude-control ae-

t_,leration poll nomials are turned on

and off, rcspcctively; epochs may ix,

sFecified in UTC, sr, or A.I time

stades (not E.T.)

l fort :_ Ta,'l

0 f:_r t < T.t.,t T.4,._"_T.,:

input (a priori) accel.:_ration, km/s *

(value of ea,.h ,_a_, i = t,x,y, will be
obtained by linear interpola, tion be-

twin input points on any time scale)

1 kin: = ] × lo,
c l_m = s_m z

where

A_ ---

r_lp =

Ttlllp :

u* (t - T,.) =

(._ r "-"2

.solar radiation constant

1.:3S_ X I0 _W/km:

1,'_3 "- 10' k_./s'

1.4q6 _ 10" km (nwan dist,mut.
eart!,-sun -- 1 AU)

2..t'F.379_5;-_ 10' km/s (sp(,(,d of hght)

,ominal area of spacecraft projt_ted

ol)t(, plant' i|orllli|l to sun-sl_teccraft
line, m:

imtantant_us mass of spauecraft

distance from sun to spacecraft

elx_'h at which acceleration from

solar r,tdiation pressure is turned on

(becomt, s effective); epoch may be

swcified in UTC, ST, or A.I time

scales (st,e Glossary for time scales

UTC and ST)

I I for t >_ T,_e and if spacecraft is

in sunlight

0 for t < T_a# or if spacecraft is in
shadow

solve-for effet¢ive area of accelera-

tion of spacecraft in radial direction

from solar radiation pressure di-

vided by nominal area A,

I'2

r

I

f

)
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+EPS

solve-for ettective are,_ of accelera-

tion of spact_,raft in direction of its

lx_sitive x-axis (along X* vector) di-
vided by A_

soh'e-for dtcctive area.of accelera-

tion of spacecraft in direction of its

positive y-axis (along Y" vector) dt-
vidcd b) Ap

earth-spacecraft-sun angle, rad

c,=

c;=

II

soh'e-for derivatives of G., G.,

and G r with rt.sla.ct to earti_-

spacecraft-sun angle

,X(L.aG,..xG, _- incrcments to G,, G., and G_ ob-

tained h)" linear interpolation of

input lx)ints Sl_'cified in au)' time
scale

^

The unit su||-spat,t,t,raft ,¢ector Ir_e i:, computed trom

_ATp r • i'_ _9

Ir r;_ (.213)

_']lt'rt,

r --- rectangular coordinates of spacecraft rt,lative to
twnter of integration, refcrrcd to mean earth

equator and equinox of 19,30,0

rectangular cxmrdinatcs of sun relative to center of

iw_teg:'ation C, reh,rred to mr,an earth equator and
equ!nox of 19,50.0

The spacecraft _* and _* unit vet:tor_ arc obtained as

a rotatioi_ of the tangential T and normal N vectors through
the angle K (Fig. 81); i,e,,

\Y'/ \-_i. _ ,:o_K/
(214)

The angle K is a given constant; that is, _ot solved for.
Computation^of the unit vectors _ and _,1 requires the

unit vector U_, which is a unit vector from the space-

44

- T

FIE'.31. The migie g

craft to a reh,rt,nt_: body that orit, nh t!,c spacecraft
alxmt the roll axi;_ (_iun-sp,tct,er_L[t Ill|t,), 'l'l,e reference

body may I_'a star, a l)lant, t, or the moon, If the ref-

eri,nct, tx_l), is a star, then

COS _ eo_i o, 1

_,,-/-,s a Sill,_l (215)
L .,in8 .i

_ here the ritdlt ascension fl and declination 8 of the star

are reh.rred to tht. mean earth cqt,ator and equinox of

1950.0. If the reference Ixxly is a planet or the moon (nor-
mally the earth),

_ :-: Ir_ ¢:'_ _ r

Ir_"'- r! (2z6)

where r_' represents the rectangular coordinates of ref-

erence body B relative to the centtr of integration C,

referred to the mean earth equator and equinox of 1950.0.

The unit normal vector _, normal to the sun-spacecraft-

reference-lxKly plane (Fig. ,q2), is computed from

A ^

N- ^ ^ (9.17)
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pmnnm_

i / "_

A,___
Q

Fig. 32. Oi'ieatation of a spacecraft relative

tO sun, earth, and reference body

The unit tangential vector _, tangent to the sun-

spacecraft-reference-body plane, is

The EI'S augle may Ix, t_nlputed from

,% A,
cos _ EPS = -I've * U_, Odeg <_EPS < 180dog

where t_ is computed from Eq. (216) using B :: earth,

The acceleration of a spacecraft due to solar radiation

pressure is computed whenever the spacecraft is in the

sunlight and its solar panels have unfolded. The space-

craft is considered to Ix' in the sunlight whenever the

physical central body (PCB) is the sun. When the PCB

is the moon or a planet, the spacecraft is considered to

be in the sunlight if it is not in the shadow of the PCB,

which is defined by the shaded region in Fig, 38.

To detemdne when the spacecraft enters and leaves

the shadow of the PCB, the following quantity is co:..

puted:

r--_ -," (_18)
I

where

r' = I _ l= radius of PGB

JPL TECHNICAL MEMORANDUM 33-45I

' ,,'1' ,,,_

_, 7.1 \

../_ /-- / SP_E,"ItAFT

sun O _'_

Fig. 33. The parameter !.9

• ,/ _s-'_:tc_A_l
',o-,.

Fig. 34. Spacecraft moving into or

ou! of shadow o| body

It is assumed that, whenever D = 0 and Ir,-,l>
j t'_._,,. [, the spacecraft is either entering or leaving the
shadow. To determine whether the spacecraft is enter-

ing or leaving the shadow, D is computed with r_c.-_

replaced by r_n,-e + i'rc,-e; i,e,,

l Io, = x + -,,

Wh.en (1) D'> 0, the spacecraft is leaving the sl,,,dow

of the PGB (if the direction of integration is forward), as

shown by the "outgoing trajectory" in Fig, 84; when

(_) D' < 0, the spacecraft is entering the shadow of the

PCB (if the dircdion of integration is forward), as shown

by the "incoming trajectory" in Fig, 84.

D. Acceleration Caused by Finite Motor Burns

The acceleration of the spacecraft relative to the bary-

center of the solar system in 1950.0 rectangular coordi-

ruates caused by a finite motor burn, as opposed to ah
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b
/

"imtantane_ts" motor burn (se,: below), is given in Ref. 7,
(r,. so) a_

wher_

A
"r($1B) : a U {_,(t .... To) - _,( t- T/)} (220)

a = magnitude of _.:(MB) vs' time

I_ = unit vector in clirection of i: (MB) vs time

To =: effective starl time of motor, E.T. value
of: the so!,vc-for UTC epoch, To (UTC)

srI = effective stop time of motor, E.T,

t = epheme'r!,s time

for t _.':.7",

for i_...,....Ir'o

The efftxt,,,'e stop tiw.e 'l'r is given by

'/'/= T_ + T (221)

where T is, the only _:.oive-for burn time of the motor in

ephemeris time.

The acceh.ta!:ivn magaitude a _in km/s ;) is givt, n by

t"(t)
a-=--(

re(t)

F,, _ F,I -'- F_t" -_ FJ:' -_ For'
= C

. t • 1 .¢t:,- 1 ,eL,t,m° - Mj - _2-M,V -.--if- "T

(222)

where:-'

F(t) = magnitude of thrust at time t (poly-
nomial coefl_ticnts Fo, Ft. F_, F_. and

F. are soh e-for parameters)

z_it should be noted that dm coel_ients

b'l,, 16 1_1 l .

ate actually the coefficients of a Taylor series; that is,

tj't, = I ." l- _1_/ I 1'/,i"_i, = ti,, "i _U, W.' *uo, ._.,o,._u_=

Tb.e coet_cients of the polynomial (Eq. 222) appear as in the

first of these equatiom became they are supplied In this form by
the Propulsion Division, at JPL,

46

n'|o _---

• . ° ,

Mo,Mw_.I:,M_ =

spacecraft mass at time t

0.001 for F in newtons and mass in
kilograms

mass of spacecraft at To in ephenaeris
time

polynomial coefficients for propellant
mass flow rate (positive) at time t,
M(t) = I(L + I(I,t + Yl=t: + I(l,t _

(coefficients are not solve-for param-
eters, but nmst be supplied)

t = E,T. - To (E,T,), s

where E.T. is seconds of ephemeris time from January 1,
0 h E.T., 19,50.

%vherc

^
The unit vector U of thrust is given by

^ /",\
! r _[.',)

\t',/
cos S cos a /-:- _COS_ sinu

\ sin a

A
a = right ascension of U

6 = declination of _"

(2¢3)

given by

II = Oh, + art + ajt: + a_t :_ + O_t'

= _.+_t-r_t:+8,t _+_.t' f (224)

where the Imlynomial coefficients art, sohe-for param-
eters. As an example of how these tocficients may be
soh'ed for, a midcourse maneuver will ix, considered. In
this case, an impulsive velocity increment a_ is assumt_l;
a midcourse maneuve_ program computes the roll turns
and burn time so that the computed _ is obtain:xl by the
spacecraft. Given
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from the midcomse maneuver program, a priori values of

a., and 8. for use in Eq. (224) may be computed from

cos .,, [(.x._)_- (.x_):]"

,,in u.... [(,xi)*' _- (._)*'1_'

where

a_ --- [(a.i.): _-(.xO): ._ (a-:)q"

Tile vector .xi" ohtained from the midtx_urse prot;ram

is referred to the true equator and equinox of date, and

must Ix, rotated to the mean equator and equinox of

1,ck7.30.0before _t,, and S,, art. c_oniputt,d:

M',. ..... _ (NA) r _i" .....

wherv N aud A _nt. rotatio, matricvs Riven in St'ctions

V-E aml -II, Tin, n.mai.int_ co4.t|icivnts el Eq, t2:24) will

I." put at zt'ro and solved fi_r,:'

it shouhl Ix. noted that _.I_,. acevh.ration t,ausl,d In

solar radiatio:l prt,ssure must Ix. c.omputt.d from m,, |w-
fore a mant,uw,r, from re(t) durinR a ma.euver, and from

re(T,) after a maneuw,r, The value of m,, for a t_iven

mam, uvt,r is m(T_) from the previous maneuver.

If no data are takt'n durint_ the n',aneuver, and the

duratio, of tln, malwuver is very short, it may iw repre-

sented by imtantanco|ls ('ha||t_es in ._r and ._i" of the

spacecraft. A t.onvvnient set el maneuver parameters to

repr,_.,ent the change in stall, ._l., /1/' of the spacecraft is

.z-)L aml t_ (the duration of the maneuver).(sl,e Eq. oa-

The chant_e in txrsition .Xr in terms of these parameters is

1

ar -- -_ a_t_ (2"27)

: hMoyer. T. D.. ]PL internal document..¢,epl. ! 1, 1964.
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where t_ = 0 for a spring-separation maneuver. 2'

At an i|istanta||eous maneuver, the program has the

capability of reducint_ the area of the spacecraft by a
sl_'cifit*d amount AA, This arca change would sinlulate,

for example, the expulsion of protective shrouds during

a sprin_ ._eparation, This reduced area in turn will at[t, ct

the acceleration due to solar radiation pressure,

E. Acceleration Caused by Indirect Oblateness

The indirect aeceh.ration of the cx.ntcr of integration

caused by the oblateness of a wrturbing body is gen-

erally ignored ix, cause the planets are separated by such

large dist_mces that tht' nonspht,rical efft,ct is negligible,
However, for the case where the t'ar01 is the center of

integration and the moou is the disturbing body (or

rit't" tTrsa), an expr_._sioP has hvt,n derived for the in-

dirv,:t aecelcration; by using first-order oblateness terms,

this expression accoutlts approximately for the oblateness

of each [*tK|)" (see Ref. 8)."'

I, Bami¢ eqlmlio.s, In this subsection, an im,rtial Car-

tesian coortlinate system RiX,Y.Z), in which the axes are

paralh,l to the 19,50.0 mr,an ei_rth equator and eqtfinox
¢s*ortlillate system, shall Iw (h,fintxl, 1[ on,, h,ts X ,, Y,. and

Z,, lw the t_)rdinatvs of a spacvcra[t of mass M, and h'ts
X,, Y,, and Z, (i 1, ,,,, n'_ I., the coordiuatt,s o_ n

b_li_.s of ,nas_ M,, the i.dices 1 and :2 will refi'r to the

earth and m(m., r_lwt,tivel.v. The |orcl' D)tehlial ]wtween

a.y two l_dies shall Iw de.oted !))" U,_ so that the com-

I_)m.|ats of a force 51, t'atlst'd b)" "_1i art' _iven by

F_,, , X X --. Y.Z , ,_._a,

Then. according to Newton's second law,

(i "-- 0, 1, ''', ll) X _-._, Y,Z (22())

represents the equatio||s o| |notion of the n -_ 1 |xxlies in

the inertial coordi.ate system.

If a parallel coordinate system r(x,y,z) is defined as

ceiatered in one o_ the bodi,,s (say, M,), then

r_ -- r_ = Rj -- R, ('2,30)

-"Meyer. T. L JPL internal document, Sept. 11, 1.964.
-"Sturms. F. M., JPL internal documents, Aug. 10, 194_4;(')tt. 29,

lf_5. aral Mar, 18, i,cK_9.
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represents the radius vector from tile central.body to the

Ith body. For the spacecraft, then, by use ot Eqs. (029)
and (230),

1 z.U.: 1 _._ _U.: (231)
._t,, j_, _X. M, _"Z/,,.iX..

j_,c

Tile first term in the second summation is

1 ?U,,o
X_ Y,,Z:

31, ?'X,. '

and represents the acceleration of the body on the central

body. This term may be neglected, as it is very small.
Thus_

?U.) 1 S" ?U's

ja, c

':" ....e(' "'"1"")= M,7 ;x.-'--7_ j _ M.. ,X,. M, ;X,7

x,, ---,,y,,,.:,, {_2)

l_l,cause

,_U,: ?U,,

,X, ;'X/

[',i : U.

one obtains from Eq. ('232), for tile acceleration of tile

spacecraft,

.. --: 1 ;U,,: k( 1_U,,j. _-__1 ?'U_\x,, M,, ;X,, s:_ M,, ,X,, _ M, ?Xj )

g,, _ y,,,Z0 (2._3)

Now the potential can bc expressed as the point-mass
term plus a nompherieal term

G31,Ms
U,j- R,_ ÷ U_j ('2.34)

_where.

r, s = R,_ --= [(X, - X,)' 4- (Yi - Y,)_" + (Z, - Zs)'] _"

4tl

It is desirable to include the effect of planetary oblate-

ness on the spacecraft when it is within a specified dis=
lance from the l_,dy; thus, U_,: will be zero or nonzero

depending upon tile distance from the body Mj. For the

present, the noaspherical term will be taken to be zero

for all pairs of planets except the earth and moon:

GM,M,:
U,,.. = R,, 4- U_. (235)

In practicc, the values of X, )',, and Z_ are not used;

because they ahvays appe_u" as differences, the following
relations are substituted:

Xi -- X i = Xi -- XI

7U,j ?U_

r,j - R,s = [(x, -.r:)" 4- (y, - t.tj): 4- (z, - z:)_-]_'

Equation (233) then take_ on tile form

" I ",e (x,,, *e)lx. : GM, 7_ -* GM , -*
ro i t r,',:

j_c

1 l? _'M.. ,x,.

i - 1 if central body is moon
i :2 if ecntral lxxty is earth
(this term is zero ff c_,ntral

bcnly is neither earth or moo!l)

The terms in the first pair of brackets in Eq. ('2,36)

correspond to the Newtonian point.mass acceleration

(see Eq. 203); the terms ia the second pair of brackets

represent the (direct) oblateness perturbations. The last

term is from the mutual attraction of the earth and moc.n;
the derivation of this term will be d,iacatssed next.

2. Derivation of tern| U'_:. I_ one lets dM, and dM, bc
differential elements of the mass of the earth, and the

moon, respectively, one must define parallel coordinate

systems (_,,_,¢) and (/,',,f,¢') centered in the earth and

moon, respectively, _.'othat the c.m. of tEc _noon is located

,IPi. TECHNICAL MEMORANDUM 33.45l
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thus,

U(2)=f_fHG1a_ , , _ _" (3q 2 -- 1)a 2dMxdM,_

c 3 ¢)___[(¢ ¢)_+ +(¢

G
(245)

The integrals of the ptoduet terms -2_' + _' + _' are zero because the coordinate systems are at the centers
of mass. Regrouping of the remaining terms yields

v,2rm)- r_2 , _2 + 7_ + "_ (7 + _2) dM, + -':F-r,_ J_t_ _'_ + 7,z + - _ + ¢'_) dMz (246)

If one defines

i

|

f_ 1, (_2 + 72 + _2) dM, = _ (A + B + C) (247a)

f_ 1 B'(_'_ + n" + ¢,2) dM2 = -_- (A' + + C') (247b)

t, (72 + ¢_) dM_ = I (247e)

t, (7'2 + U') dM_ = i' (247d)

where A, B, and C are the moments of inertia of the earth about the principal axes and I is the momen_ of inertia of

the earth about the &axis (similarly for the moon, by use of the ,primed rotations), then the indirect potential, if the
earth and moon are taken to be triaxial ellipsoids, is given by

=tm)=GM*M2r(A+B+C-81)U, 2
_" r_, k 2M,

-_ (A' + B' + C' - 819
2M2 ,.j (248)

This formulation of U_ (i.e., in terms of moments of inertia) has the disadvantage that it leads to loss of significant

figures because of small differences of large numbers; however, by formulation of U'2 in terms of spherical harmonics,

this problem ean be eliminated, In spherical harmorlie form, Eq. (248) becomes (ReL 18, p. 153) 2_

r_2 {R_[-Io_P2(sin_) + C*,P22(sin¢b)cos20] +-R_ [-1_ Pc(sin#) + C_* P2_(sin#)cos2,\]} (249)

26Sturns, F. M., JPL internal document, Oct. _9, 1985.
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on the &axis at a distance r,_. Tim distance of tim mass

elements is then given by

C _rly, a < 1, and, because the series is convergent, one

integrate term by term so that

d_ = (r,,.,+ ¢ - _)-_+ (_' - _)_+ (¢' - ¢)"

"L rtz f_2 J

(237)

U'2=/Mfy GdMflM'',, rr_ [l+P,(q)a + P_(q)a2+ ...]

= rr_o_ + li,O -t.... (242)_12 _12

For rr_o_ one obviously has

Letting

q = I (238)
r12_t

-,_rT(°)=/,, f., G --dMldM2r,2- G MtM_.r,,., (243)

which is just the point-mass term (see Eq. 235). Because

where e,(q)=q

(_ - ¢)_ + (v - n,), + (¢ - ¢)_
a 2 = (239)

r_..,

then Eq. (237)becomes

d 2=r[2(1-2qa+a 2) (240)

By Newton's law of gravity, the element of force

potential is

GdMadM=
dU12 = d

and

_-t'
q=--

rlzot

(Eq. 238), it follows that

U(x_} = /u fx Gaq dM'dM2,, r_2

.] u, J m rl_

However,

and, by use of Eq. (240), this equation becomes

GdM_dM_
dU_2 = (1 - 2qa + a'O''_ (241) and

rx2

The quantity rea, ed to the -_ power is the generating

function of a power series in a, with coefficients consist-

ing of Legendre pol_/nomials in q, Pdq); that is,

(i - 2q a + a'_)-'_ = i + P,(q)a + P2(q)a 2 + P,(q)a 3 + ""

Thus,

f $dM:. = 0

xf dM_ = 0

because $ and $' ate measured from the ceaters of mass.

Therefore,

U"_ = 0 (244)

Now

dUl_

GdM_dM_
[1 + e,(q)a + P_(q)a_ + ...] P_(q)=l(3q_-l)
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thUS,

(245)

The integrals of the product terms --2_f'+ _' + _' are zero because the coordinate systems are at the centers
of.mass. Regrouping of the remaining terms yields

(246)

f_ 1, (f2 + 72 + ¢2) dM, = _ (A + B + C) (247a)

, (f,_ + _,2 + U2) dM2 = -_- (A' + B" + C') (2475)

t, (_2 + ¢2) dM1 = I (247e)

., (,1'2 + g 2) dM2 = i' (247d)

where A, B, and C are the moments of inertia of the earth about the principal axes and I is the moment of inertia of

the earth about the f-axis (similarly for the moon, by use of the .primed rotations), then the indirect potential, if the
earth and moon are taken to be triaxial ellipsoids, is given by

GM1M= [ (A + B + C - 8i) (A' + B' + C'- a,,) ]U'x2 = u(_) = r_, 2M, + 2M2 (_48)

This formulation of U_ (i.e., in terms of moments of inertia) has the disadvantage that it leads to loss of significant

figures because of small differences of large numbers; however, by formulation of U_2 in terms of spherical harmonics,

this problem can be eliminated. In spherical harmonic form, Eq. (248) becomes (Ref. 1._L_p. 158) 26

GM1M2

U_, - r_2 {R_[-l_.P,(sin_k) + C='2P,2 (sin_) cos 2# ] + R== [--1 _,P, (sin#) + C_* P2,(sinfl)eos2,_]} (249)

=_Sturns, F. M., JPL internal document, Oct. 29, 1905.
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where

c_

c,*

1_,C_, S_=

1",c,_, s,_

R,

= (c._,+ s-;,)',_

= (c._ + _.,.,,s,=v,,

= oblateness parameters for earth

= oblateness parameters for moon

= mean radius of earth

hence,

S.'=
sin2a2 = (S,_ + -r_,_r'_v'

COS 2¢1a
(s;_ + c,;_)'_

1
_, = _tan- \_--_/_/

where

R2 = mean radius of moon

rr., = magnitude of the vector R from the
central body to the other body

R = X+_105o.oif earth is central body

R = -X®_l.,o.o if moon is central body

where X®_l,_o.ois the earth-moon position vector in mean
earth equator and equinox of 1950.0 coordinates. The
vector R has spherical coordinates

= geocentric latitude

0 = geocentric longitude -al

fl = selenographie latitude

), = selenographic longitude -a_

where a, and a2 are defined by

Sm

sin 9ax -- (S_ + C_2)v_

C22

cos2a, - (Sh + Ch) _

The angles _, 8, fl, and 2_and the earth-moon distance
_= are computed from R as follows:

I r12 I
= SENAR

O+a_

(250a)

I r12 I

= SBMKAR (250b)

_+a2

These are the spherical coordinates of R in earth-fixed
and moon-fixed coordinates, respectively, where

A = precession-rotation matrix (Section V-B)

N = rotation ma.trix (Section V-E)

E = earth-fixed matrix (Section V-F)

K = mean obliquity matrix (Section V-D)

M = moon rotation matrix (Section V-I)

B = moon-fixed matrix (Section V-J)

$ = transformation to spherical coordinates (Section

IV-B)

hence, The indirect oblateness acceleration in i950.0 coordi- ?_
nates is then given by ,_

ax = _tan -a __
\C.,J _,o(IOnL) = (ENA) _LI _:1+ (BMKA) r L, i_, (95i)

!
where the L matrices rotate to the body-fixed coordinate axes

cos#, cos (0+ a,)
L, = | cos + sin (0 + a,)

\ sin

-sin (0 + a,) -sin ck cos (0 + a,)\

cos (0 + aa) -sin qS sin (0 + at)_t _

/0 cos 0
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and L_ is the same, with/3 replacing 4 and x + a2 replacing 6 + al. Tile transposed matrices continue the rotations

from the body-fixed to the 1950.0 coordinate system. The components of i.'1 are computed from

_U_ 2 1 0U_2 .._ 1 _U_..
x" - _r,.., Y" = r,_ cos,l, _0 z, r:2 a4,

yielding

II° [
GMI _" sin2 '# - _

/ 0
L-s sin¢ cos¢J

_gcos  cos  11--6 cos _ sin 28

-- 6 sin _, cos <bcos 2#

(252)

In a complete:ly analogous way, one obtains

tl9GMt -_ sin

1:2= i;

[.- 3 sin fl cos/3

where i = 1 if the moon is the central body and i = 2 if

the earth is the central body. The expressions in Eqs.
(252) and (258) are in local "up--north-east" coordinates

(Fig. 85).

It should be noted that, ff the moon is the central body,

the spacecraft acceleration M1/M2 is as big (and opposite
i.'a direction) as it would be if the earth were the central

z' Zb

IDIAN

y'

t

Xb PLANE

Fig. 35. Up-north-east coordinat_ system

52

--9 cos _"fl cos 2),
+ C;* - 6 cos/3 sin 2X

- 6 sin B cos fl cos '2X

(25s)

body. The magnitude is determined by Eqs. (252) and
(253); the reversal in sign occurs in the La,L_ matrices,

and enters through the R vector in Eq. (250).

F. Acceletatlon Caused by General Relativity

In 1915, Albert Einstein proposed the general theory
of relativity, of which his earlier theory of 1905 was a

special case. Basically, the general theory of relativity is

a theory of gravitation that supersedes the classical

Newtonian theory. In the great majority of eases of
interest, the two theories lead to essentially the same

results because the few predictions the theory makes

about observable phenomena require an almost impos-

sible precision for any decisive measurement. In his

Sourcebook on the Space Sciences, Glasstone notes that

such precision ha5 been realized for only three experi-
ments: (1) analysis of the orbit of the planet Morcury

for a small relativistic precession of the perihelion of the

orbit, (2) gravitational bending of starlight passing by
the sun, and (8) the red shift of spectral lines emitted

and observed at two different gravitational potentials
(see Ref. 11, p. 854):

In oversimplified terms,the theory of gravitation based on
relativity involves two concepts. The first is the principle of
equivalence which asserts that the observable effects of

JPL TECHNICAL MEMORANDUM 33.451
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inertia, i.e., the property of matter that causes it to resist
any change in its motion, and of gravity are indistinguish-
able. Einstein illustrated this equivalence |/considering
an elevator falling freely in space, and supposing that a
passenger in the elevator releases a mass that he has been
holding. Since the elevator and the mass are failing at the
same .ate, tile mass will not drop to the floor but will
remain suspended. If the elevator is completely closed and
the passenger is unaware of his su. oundings, he will be
under the impression that there is no gravitational force
acting on the mass. Suppose, however, that a constant
upward force is applied to the elevator, e.g., by means of
a rocket, the mass which has been suspended in mid-air
will drop to the elevator floor just as if it had been attracted
by gravity. But tile effect is actually due to the inertia of
the mass and not to gravity.

The second concept is based on the postulate that all

bodies are located in a space-time medium (or con-

tinuum); this med'.',:_m has four dimensions, three of

conventional geometrical space and one of time. As a

result of its inertia, a body will move on a geodesic (or_

geodesic line) that is the shortest distance that can be

drawn between two points on a three-dimensional sur-

face in the four-dimensional continuum. The presence of

any mass causes a distortion or cul-cature of space-

time and consequently distorts the geodesics in its

vicinity.

Let us consider two masses, and suppose for simplicity

that one is fixed, whereas the other is free to move. The

curvature of space--time by the fixed mass causes the

other mass to travel along a geodesic that moves it in
the direction of the first mass. To an observer, it would

appear, therefore, as if the fixed mass is attracting the

movable one by the force of gravity. What the moving

mass does, however, is determined by its inertia and by

the curvature of space--time, and not by the gravitational

attraction exerted by the fixed mass. A physical analogy

is provided by a sheet of rubber stretched across a frame,
with a mass placed in the center of the sheet. The mass

will then distort the sheet, and together they may be

regarded as representing the curvature of space-time by

matter (Fig. 36).

\.j
Fig. 3,5. Simplified schematic representation of

gravify in space-time system

Another mass placed in tile vicinity of the central mass

will move toward the latter, not as a result of attraction,
but rather because of the distortion of the medium in

which it is eonstrained to travel.

In the classical Newtonian theory of gravitation, the

mutual attraction of two bodies is the same regardless

of whether they are stationary or in motion relative to

one another. In relativity theory, however, there is a

difference, and the magnitude of this difference increases

as the velocity of motion approaches that of light (see

Ref. 11, p. 855).

1. Relativistic equations of motion, This subsection

gives the relativistic n-body equations of motion that may

be used to generate the ephemeris for any celestial body

or spacecraft within the solar system (or to correct

ephemerides that were obtained without accounting for

relativity). 2r

In what follows, the term relativistic acceleration

means the perturbative inertial acceleration caused by

general relativity, which is added to the Newtonian in-

ertial acceleration; the term inertial acceleration-indi-
cates that the acceleration is relative to the mean earth

equator and equinox of 1950.0 coordinate system.

The relativistic acceleration of a body relative to the

barycenter of the solar system consists of the accelera-

tion computed from Newton's equations of motion plus

terms of order 1/c _ caused by each perturbing body,

where c is the speed of light. The relativistic accelera-

tion terms caused by the sun affect the motion of bodies

throughout the solar system. However, the terms caused

by a planet or the moon are significant only in a "small"

region (small in relation to the scale of the solar system)

surrounding the body, which is called the relativity

sphere; its center is located at the c.n.', of the body. The

significant relativistic acceleration of the spacecraft is

caused by the sun and an;¢ "near" bodies (where "near"

implies being within the relativity sphere of a body). The

radii of the relativity spheres are given in Table 1.

Table 1 gives the theoretical spheres for each body

within which the acceleration due to relativity caused

by that body is significant and hence should be computed.

However, for programming efficiency, a body either con-

tributes rclativistically to the acceleration of the space-

craft for the entire trajectory or not at all. The bodies

2rThe equations were taken from Moyer, T. D., JPL internal docu-
ment, Jan 4, 1908.
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which are to be treated rclativistieally are specified by

input. This manner of treating relativity spheres elim-

inates any discontinuities in the integration of the equa-

tions of motion due to relativity.

In the early formulation of the general theory of rela-

tivity, the equations of motion for a ma..ssless particle

moving in the gravitational field of other bodies were

taken to be the equations of a geodesic. That is, the

motion of a particle was obtained by solving the field

equations for the metric tensor, which describes the geo-

metrical properties of space and time, and by assuming

that the particle follows a geodesic curve in this geom-

etry. The actual method for determining the motion of

a system of n heavy, bodies directly from the field equa-

tlons was obtained for the first time by Einstein, Infeld,

and Hoffmann in 1988. This method, which is referred

to as the EIH approximation method, is, according to

Baza#iski (Ref. 14, pp. 18-29), in principle, the only tool

for obtaining an approximate solution to the problem of

the motion of n heavy bodies in the general theory of

relativity.

Table 1. Radii of relativity spheres a

Ce_uitial Mean distance Sun-planet Radius of
relativity

body

Mercury

Venus

Earth

Mars

Jupiter

Saturn

Uranus

Neptune

Pluto

Moon

from sun

ap, AU

mass ratio

0.387 6,000,000

0.723 408,500

1.000 333,000

1.524 3,100,000

1,047

3,502

22,900

19,300

360,000

27, 100,000

5.20

9.55

19.20

30.1

39.5

1.000

sphere rp,

km X 10 '_

2

7

9

4

400

300

200

200

50

I

aMoyer, T. O., JPL internal document, Jan. 4, 19611.

• 28From Infeld's equations of motion, after some computations and simplifications, the resultant equation for the
relativistic acceleration of body i"due to body fi" denoted by i:, (i), is

1 t_s 7 _i_j (254)+ o--r r_--7 fir, - rj) • (4i_,- 3i-j)] (_, - ie,) + 2c_ r,j

where

and

54

rij = coordinate distance between bodies t

and i

(hi) "_,(d_)= = square of velocity of bodies i and ],
rcspectively

_, = Newtonian potential at body i

_s = Newtonian potential at body ]

m_J rsmj

The acceleration of body i "due to body f' is a function

of the position and velocity of bedies i and ] and the
positions of all other bodies, which contribute to the

Newtonian potential at bodies i and ] and affect the accel-

eration of body j (temas 7 and 9 of Eq. 254). Although

the effects of other bodies are included, all terms are

proportional to /_s and hence are _ttributable to the

presence of body ]. The effect of the mass of body i on

its own acceleration is contained in term 2 (its contribu-

tion to the Newtonian potential at body ]) and in its

contribution to the acceleration of body ] (terms 7 and 9).

2SMoyer, T. D., JPL internal document, Jan. 4, 1968, and Khatib,

A. R., ]PL internal document, Feb. 11, 1969.
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When it is desired to determine the relativistic inertial

acceleration of any body caused by the sun, a number of

terms in Eq. (191) are insignificant; it can be shown "°v
that the significant inertial acceleration of any body i

caused by the sun is given by

_'_ [(4¢ - _2)r + 4 (r • i')/'] (255)

where

/Zs = gravitational constant of sun, kmn/s 2

c = speed of light, km/s

r,i" = heliocentric position and velocity vector of

body i (with rectangular components referred

to a ndnrotating coordinate system), km, km/s __

r-_____magnitude of r

= magnitude of

= Newtonian potential

It has been shown '_° that, because of tile uncertainty to

wlfich tlm value of the astronomical unit is known,

Eq. (260) simplifies to

_, _- i:v (261)

where i:v is given by Eqs. (255) and (257).

3. Heliocentric ephemeris of earth-moon barycenter.
The relativistic acceleration of the earth-moon bary-

center B relative to the sun S is given by

"' _ i_,,(s)+r_ - 1 + _ _ _,_(M)

1 i

+ _ _u(S) + _ _.(E) - _._

(262)

where E and M indicate the earth and moon, respectively;

i_,(]) is the inertial relativistic acceleration of body i

caused by body 1; and

If body i is a spacecraft, then

= = + (2 6/
r 7" r_j

where the second term is the contribution to the

Newtonian potential caused by any body which is rela-

tivistically turned on for the trajectory.

If body i is a planet P other than the earth,

ce = _ (257)
r

If body i is the earth E or the moon M, then

"" (263)
P_t

where t_E and/_ are the gravitational constants for the

earth and moon, respectively, in km3/s 2. The accelerations

caused by the sun are given by Eqs. (255) and (258) or

(259); those caused by the earth and moon are computed

from Eqs. (254), (258), and (259). Again, it has been

shown aa that Eq. (262) simplifies to

1

tz i:E(S) + 1___ I:M(S) (264)_'- 1+,

where i;E(S) is given by Eqs. (255) and (258) and i:x(S)

is given by Eqs. (255) and (259).

¢_ = 2£ + _'_..L (258)
r rE_

_bx = /_'_ + /*-'Lr" (259)
r r_

2. Heliocentric ephemeris of a planet (other than

earth). The relativistic acceleration of a planet P (other

than the earth) relative to the sun is given by

The relativistic acceleration of the earth-moon bary- !:
center could be computed directly from Eqs. (255) and
(257) in terms of the heliocentric position and velocity of

the barycenter. However, the third significant figure _

of the acceleration would be affected; therefore, it is !recommended that Eq. (264) be used.

rp -----l'l" -- l's (260)

4. Geocentdc ephemeris o_ moon. The relativistic

acceleration of the moon relative to the earth is given by

_SMoyer, T. D., JPL iuternal document, Jan. 4, 1968.

_ = _.(s) - },(s) + _(_) - _,:(M) (265)

_0mMoyer, T, D,, JPL internal document, Jan. 4, 1968.

,,,,'
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where the first two terms are computed from Eqs. (255),

(258), and (259) and the last two terms art., computed

from Eqs. (254), (258), and (25.9).

The aeeelerations in Eqs. (261), (264), and (265) are

numerically integrated to correct the basic ephemeris

(as obtained from, e.g., an ephemeris tape) of a planet,
the moon, or the earth-moon baryeenter.

5. Equatiens of motion fo't generation of a _aeeerafl

ephemeris. The acceleration of a spacecraft p relative

to the center of integration C (a planet, the moon, or the

sun), which is integrated to give the spacecraft ephem-
eris, is .the sum of the usual Newtonian acceleration

and the following relativistic acceleration:

r, = - + - (266)
J

The first two terms are the aeeelerations of the space-

craft and center of integration caused by the sun, com-

puted from Eq. (255). (The second term is zero if the

center of integration is the sun.) The third term is

the acceleration of the spacecraft caused by eacl', "near

body" ], computed from Eq. (254). The ]-summation, if
it exists, will include:

(1) A single planet.

(2) The earth and the moon.

(3) The planets Jupiter and Saturn.

The last term of Eq. (266) is the acceleration of the

center of integration caused by a near body n, computed
from Eq. (254). It is nonzero only when the center of

integration is the earth or the moon, in which case the

near body is the other of these two bodies. The Newtonian

potentials appearing in Eqs. (254) and (255) are evaluated

from Eqs. (256) through (25.._ as appropriate.

When the center of integration is the sun, its rela-

tivistic acceleration caused by the planets and the moon

(3.5 × 10 -18 km/s a) is ignored.

VIii. Num_ricai Integration of Equations of

Motion of a SpaCecraft

As is the case with most differential equations arising

in practical appl_cations, the equations of motion of a

spacecraft cannot be integrated in closed form. One

reason for this is that to integrate the Newtonian point-
mass acceleration (Section VIi-A) in closed form, 6n
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constants are required, but only 10 are known. There-

fore, discrete methods must be employed for solving
Eq. (191). In a discrete method, the solution of a differ-

ential equation is computed at a discrete point t,. To

advance the solution from t,, to t,,1, if only information in

the interval it,, t,.a] is used, the method is a one-step

method. If information from steps preceding t, is used to

advance the solution, the method is a multistep method.

The most obvious disadvantage of one-step methods

is that no use is made of past information on the solution,

and many derivative evaluations over it,, _,._] are neces-

saly if high accuracy is desired. Multistep methods have

the advantage of using already computed vah_e_ for most

of their information; hence, the computational effort is

reduced. A disadvantage of the multistep method is that,

before it can be applied, some points to the left or right

of the starting point (say, to) must be computed by some

other method (for example, by use of a Taylor series
expansion).

A. Solution Method

The algorithm used to solve numerically the second-

order differential equations of motion is a multistep

method in summed form. It is elosely related to the

familiar Adams-type method. The algorithm may be

regarded as consisting of two parts:

(1) A starting procedure to produce the solution values

at the time points t__, t-a, "', t-re.

(2) A stepping procedure of the predictor-corrector

type to advanee the solution one time step, making

use of the solution at the m immediately preceding

points.

Before (I) and (2) are described in more detail, the

subject of backward differences will be discussed.

B. Backward Differences

If a function _(t) and a spacing h are given, the back-

ward difference operator V is defined by

_7[(t) = )_(t) -- _(t -- h) (267)

Applying _/ to [(t,)_[,, oae obtains

v/. = g - f._, (26s)

JPL TECHNICAL MEMORANDUM 33-451
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Then or

_7"f,, :-- V(V"-' f,,) (269)

and it is easy to verify that

V'f,,--f,,- 1 f"-'+ 2 f,,_..,-t-...

+ (-1),-,(') 1 f .....' + (-z),f._,

=,.o t f,,-i (270)

(with _7° f, = f,).

The backwald difference operator .may be used sym-
bolically as a number or variable (Ref. 15, p. 128) beeause
it formally satisfies the laws of algebra; i.e.,

v(f. + f_) = vf,, + W,. = vf,,, + _7f.

_7cf. = c_Tf .

v_(vJf.) = v'*_f.
or

By making use of these propertie_, it is possible to ex-
press the differences of a function f in terms of its suc-
cessive differences.

Let us consider the Taylor e__g_ansion of f(t + h)
about t:

_T.I] h_ "" h3 "'"f(t + h) = f(t) + (t)-q- _ f(t) + _ f(t) + ...

(271)

If one defines the differential operator

d
D_-TE

(272)
d"

D __--d-i7

its use in Eq. (271) yields

h h" h z
f(t + h) = f(t) + -if Df(t) + -_. D:f(t) + -_. D_f(t) + ...

JPL tECHNICAL MEMORANDUM 33-4$1

h h _ h'_D:' )f(t + h) = 1..t "iT D + _ D -_.i _ -_.... f(t)

(273)

By means of the series expansion for e'-",

It 1/2 t/:_
e:_ = z___q-+_+_W + ...

the differential operator on the right side of Eq. (273)
may be written formally

hD tf_D '-' h::D_
1 +.--_-+--=_, + .--=-+ .... d'°

il _! iJl

and, hence, f,+_ may be written symbolically as

f.. = e_Of.

Change of h to -h then yields

f(t - h) = e -h° f(t)

_-i _ e "hD fn

Equation (268) may then be written as

vf. = [1 -- e-_o]f. (274)

In purely operational form, Eq. (274) takes the form

_7-- i-- e"hD .,_

Ot _:

e -h° = 1 -. V _ E -_ (275)

i
where E is the shift operator defined by Ekf, = f (t, + kh).

From Eq. (275), it follows that

- h

D-' = In(1 - V) (2'/6)
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C. Derivation of Predictor-Corrector Formulas

The aeeeleration vector i: in Eq. (191) has three com-

ponents,

and, in all of the following sections, the equations will

be given for the variable x only. (Identieal formulas
would be used for g and z.)

The following definitions will be used:

_ = _(t,)

;q = ;c(t_)

x_-i = k(t, - h)

Now

since

_. - ;c,,-,= fiTf(t)dt = V(D-'_.)

\ 5-1
(277)

U _ U3 U_ U _

ln_(l±u) =_+u-_-___ 8 4 ± 5

or

= h(,=_ ° b,-i V')_.

_ h (_7o - 1

(_78)

To. derive the so-called summed form of this formula,

one writes the left side of Eq. (278) as _7._, and then

511

applies the improper operator _-' to both sides of the
equation:

= h b_.V i _'_
1

1
Vo _ _ _7_ - 1 _72

(_79)

The expression _7-_,, which appears in Eq. (279), is

called a first sum of _,, and satisfies the equation

So far, _7-_ has only been defined to within an arbi-

trary additive constant. The practical use of Eqs. (279)
and (280) requires that an initial value of _7-1_ be derived

from the given initial value of _ (see Section VIII-E).

A generalization of Eq. (279) that gives k,,_, for arbi-
trary values of s is obtained as follows:

k._, = E-q. = (1- :7).k. (_8:)

where E -_ is defined by Eq. (275), or

:7) 3

= h [,:__ b,(s)V'] ',, (28_)

With s = - 1, this is a predictor formula; i.e., the summed
form of the Adams-Bashforth formula:

x..,,=h V-'+ V°+T_-2 -+... _,

With 0 < s < 1, Eq. (282) may be used for interpolation

of values of k in the interval between t,., and t,. Equa-

tion (282) will be used with s equal to a negative integer

or zero as part of the starting algorithm described in
Section VIII-F.

,IPL TECHNICAL MEMORANDUM 33-451
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A similar formula giving x in terms of the backward difference line at _,_ will also be needed. Reducing by one tile

order of derivatives in Eq. (282), one obtains

-(1 -- v), ]_,, (28_)x,,_,= h In(l-V)

Replacing k,, in Eq. (288) by tlm right side of Eq. (279), one obtains

(1 - v). }x._. = h_ t[ln 0 _ V)]" 33"

= h" _ ai(s) V __,
i _-'J

(284)

As with Eq. (282), the use of appropriate values of s in Eq. (284) provides for prediction, correction, interpolation,
and starting. In particular, the pledictor and corrector formulas are, respectively,

and

x.,, = h-" V-" + 0. V-' + V° + V_ + 2-_ + "' £"

x,,=h2( V'_'-V-'+IV°+O'V'- 1 '_ )o-_-6V'+ ... _,,

(285)

(286)

The expression V 2£, which appears in_Eq. (284), is called
a second sum of 33; it satisfies

V-__. - V-__.__= V-__,, (287)

and its initial value must be determined from the given
initial value of x.

To advance the solution one time step, Eqs. (282) and

(284) are used with s = -1 for prediction and s = 0 for

correction. If s has such values thats = 1, 2, ...,+m, equa-

tions are provided for computing past values of x in terms
of a difference line at t,; the method is said to be of

order m if the highest-order difference used is _7m_.

Thus, the basic formulas for integration, interpolation,
or differentiation are:

m

x(t - sh) = h: _ a,(s) V' _(t) (288)
i =-2

m

_(t - sh) = h _, b,(s) V' 3_(t) (289)
t =-1

m

i;(t - sh) = _ c,(s) V' ;;(t) (290)
t=0

m

";_(t- sh) = h-' 3-'.d,(s) V' _(t) (291)
t=l

JPL TECHNICAL MEMORANDUM 33-451

where -1 < s < m, and _7m33 is the highest-order differ-

enee retained. Formulas for computing ai(s), bi(s), el(s),

and d_(s) are given in Section VIII-D. The array Dt,_,h
= [V_,], i = --2, --1, ..., m is 1-nown as the backward

difference line of _ at t, based on a step size (or mesh

size) of h. It is said to space an interval

t, - mh < t < t, + h

because, given only h and Dr,,h, one can compute x(t), _(t),
and 33(t) in that interval, by use of Eqs. (288) through

(291). The solution is advanced from time t, to t,.x as

follows: given the difference line at time t, and a step

size h, a new difference line is computed at time

t,+, = t, + h (292)

The value x at t,.t (i.e., x,.x) is found by use of Eq. (284)
with s = - 1:

m

x,+, = h2 _ a,(-1) _' _,, (293)
| =-:_

and _,+x is computed from Eq. (282) with s = - 1:

_._ = h _._ b,(-1) V' 33. (294)

59
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If the solution method uses the predictor only, the dif-
ference line at t,, 1 is formed,

If c,,.1 is the difference between the corrected value

_,_)1 and the predicted value _,,+1,

V -I_6.÷i= V -__6,,+ i6..

V -2_6.÷,= 27-"£.+ _-' )_.÷,

i = 1,2,...,m+ 1

(295a)

(295b)

(2950)

e.,1 = _(o..- _,,+, (298)

then one forms the corrected difference line

_7__cn_x = V __,,+, + c,,+,, i = 1,2, "', m + 1

(299a)

and the solution is advanced from t,,+_to t,+2 in an analo-

gous way, as described above.

The (m + 1) backward difference is computed to obtain
an estimate on the truncation error (see Seetion VIII-F-2);
the (m + 1) difference in Eq. (299), below, is computed
for the same reason.

If a predictor-correcter method is desired, correcter
formulas are derived from Eqs. (284) and (282), with

s = 0 and n replaced by n + 1:

X.+l = h2 _ ai(O) _7t Xn-¢-I

D. Computation of Coefficients o_(s},b_(s},ct{s),d_ts}

In this section, the following conventions will be
adopted:

(1) m denotes the highest order of the backward dif-
ferences retained.

(2) (:)= 0if s (an integer)is less than n.

(296)
(3) s > -1.

t_

x.÷1 = h _ bJO) V' _.,_ (297)
i =-I

In using predictor--correcter formulas, one distinguishes
between two possibilities. If the correcter formulas are

applied to x,+x and k,.:, and not to the difference line
("pseudopredietor-eorreetor"), the computation stops with
Eq. (297). If the correcter formulas are used to correct
x,÷a,k_+_,and the difference line (full predietor--eorre_or),

Eqs. (298) and (299), below, are required.

From Eq. (284), one finds that

1
[In(1 - v)]' (1 - V)'= _ a,(s)V' (800)

i=-2

If _72 is applied to both sides ot Eq. (800), it follows that
this equation is equivalent to

[ha(lV--V)]' (1- V) '= _..,:oa_ (s)k-/' (301)

From

where

2 In(1 - z)[In(_ - z)]' = - 1--'_-_

( ...)=2(l+z+z 2+z"+...) z+lz 2+-8 +

= 2(s_z + s_z2 + s,z" + ...)

1 1
s,=l+_+...+ 7
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denotes the rth partial sum of the harmonie series; it follows that

(s0_)

By multiplying both sides of Eq. (301)by [In (1 - V)2/_7 ]5 and using Eq. (302), one obtains

1 +-_s2_/+ s,_'-'+_s,V a +... (a'(s)+a'(s)V+a_(s)_7"+'")=(1-_/')"

or

[ E 1a'o(s)+ a[(s)+ -_-s.,ao (s) V + a"(s)+ -_s2a_(s)+ -_s_a"(s)

[+ ... + a"(s) + -_ s2a'.,(s) + -_s,a,__(s)+.'. + _ s,÷,ao(s) + ....

If coefficients of the same powers of _7 are compared, it follows that

a; (s) : 1 (1)_ 'a' (s) = - - _ s2a_(s)

and hence one arrives at the recurrence relation

(;)_ , _ ,a" (s) = -- -_ s_ax (s) -- ._ s,ao (s)

s) 2 , 2 , 2a'(s) = (-1)" -- ]s2an-,(s) ---_s._a,.2(s) ..... -ff-_s,+,a'(s),

A special ease arises when s = -1. Then the fight side of Eq. (302) is of the foma

s > 0, n > o (_o3)

1+_7+_72+ VS+...+_7"+...

and the recurrence relation (Eq. 303) becomes

2 2 ,
a_,(-1) = 1 --_ s_a'_, (-1)- _s3a,_ 2 (-1)- '

2
n + 2 s,,,a'o (-1) (804)
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that is, the first term on the right side of Eq. (303) is
replaced by 1. Changing back to unprimed notation, for
the coe_cients ai(s) in Eq. (800) one has tile following
expressions:

a__.(s)-- 1, for all s (305)

a,,_..Xs)=(_l),(s) 2 2n - --_ s..a,_3(s) - _ s_a,_,(s) ....

2
- n +'--"2S,,.,a_.,(s), 1 < n < m + 2, s > 0

(806)

and, when s = -1,

2 2
a,__(- 1) = 1 - -_- s:a,_J- 1) - T s3a,_J - 1)

2
- _- _,a,,__(- 1)

2
n + 2 s,_l a-s(- 1),

1 < n < m + 2 (807)

Thus, coefficients a_(s) of Eq. (288) are given hy Eqs.
(805) through (307).

To compute coefficients hi(s), one should consider
Eq. (282), from which it follows that

[ ln(1-1_ q;) l(1- r_)" = **_.,_bJs) V ' (308)

Operation with V _ on both sides of Eq. (308) shows that
this equation is equivalent to

-V
[ln([--_)](1 - V)'= __° b'Js) q i (809) _

Because

Z" Z a

ln(1 - z) -z - -_- - --if- ....

--Z mZ

Z Z _ Z s

=I+T+T+T+...

it follows, if Eq. (809) is multiplied by [ In (1 -_T7_7).1,

1 1 V2 1 _s )[7,_(s) + b_(s)V + b,(s)V 2+ ...] 1 + -_- V + -if- + q- + ....

(') ....1- 1 V+ 2 n

or

' ' ]+ b'o(s) + --_-b'(s) + ... + -_-b'_,(s) + b'(s) V" + ....

() ()s s _, .... + (-i)" n1- 1 _7+ 2

Comparing coe_cients of equal powers of _7, one finds that

b'o(s) = 1, for all s

s>0

62

s> 0 (310)

(811a)

(811b)
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and

for s > 0;

b'(s) = - y b, (s) - T

b-(s) = (-yy (_)- 1 ,"T b._.(s)

(311c)

1
n + 1 b'°(s)

s _> 0, n > 0 (812)

When s = - 1, the first term on the right side of Eq. (812)
is replaced by 1, so that

1
b'(-1) = 1 - -_- b__,(-1)

1
n + 1 b'(-1)

n > 0 (813)

Tlms, the coefficients ci(s) are given by

c,,(s)=(-1)" n ' -

If s = -1, then

so that

1
"/"-" - 1 - V Z,

0<n<m

= (,:_o.V') _, (819)

c.(-I)= I (820)

Changing baek to the unprimed notation, one obtains

b_l(s) = 1, for all s (814)

b._,(s) = (-1)- - _- b._2(s).... n + 1 b_,(s)

1 < n < _.+ 1. s _>0 (815)

for all n (0 < n < m). A recursive formula for computing

c,(s) is given a3by

m

n-s-1
on(s) - n c,-l(s), s >_ -i, I < n < m

(821)

where

,'-

1
b._,(-1)= 1 --._-b._,(- 1)....

1
n + 1 b_,(-1)

1 < n < m + 1 (816)

Coefficients b,(s) in Eq. (289) are then given by Eqs.
(314) through (316). "_

The coefficients c,(s) are computed by the method that
follows. Increasing the order of the derivative in Eq.
(281), one obtains

_._. = (1 -. v),_,,

- ()=_(-1)' s V'_., s_>0 (3]7)

"_Witt, J. W., JPL internal document, Oct. 20, 1968.
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co(s)= 1 (a_2)

for all s.

It remains to find the coefficients d,(s). If the order of
derivatives of Eq. (283) is raised by two, it follows that

Replacing first n by n + s, and then replacing s by -s,
one obtains

'k:,_, = h-, [-(i -- V)'ln(1 - V)]_. (323)

asWarner, M. R., et al., JPL internal document, Oct. 30, 1968.
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Clearly,

[' (,)],,.+[' '(,)-(1--V)'In(I-V)=V+ T- I 3 '2 1 + 2

s 1 s .... 1),__(n 1)]V, + .."+, .n

Thus,

d1(s) = 1, for all s

near to,specifically assumes that f has the structure

f(x, _, t) = - x k_e + g(x, _, t), x _ y, z (328)

l(,)d,(s) = T- 1 where

1 1 S S

and, ingeneral,

1
d.(s)- n

+ ... + (_.1),,_, ( n s

n-x_ 1

= 2.J n : Fcj( )

where the c#(s) terms are given by Eqs. (318) and (320)
or by Eq. (321). Equation (324) is the desired formula
for computing the d_(s) terms in Eq. (291).

E. Storting Procedures

The computation of the solution at m + 1 time points
to the left of the starting point to requires a special start-
ing procedure; this can be achieved by two methods:

(1) Taylor series expansion.

(2) Extrapolation.

I. Start by Taylor sddes expac_ion. The Taylor series

starting procedure, used to generate a first approxima-
tion to the solution of

_"=/(x, _,t), x_ v,z (3ss)

+_= GM (gravitational constant of central body)

r = (x2 + y2 +z2) _

and

Ifl>>lgl (327)

that is, a two-body approximation to the actual equations
of motion is being used. Therefore, dit_culties may be
anticipated when g is not small compared to [; in such a
case, the starting procedure described below may con-
verge only very slowly, or may not converge at all. This
problem occurs, for example, at a change of phase be-
cause it is then attempted to solve what is essentially a
three-body problem as if it were a two-body problem;
the assumption made in the above inequality is then no
longer valid.

Let it be assumed now that inequality (Eq. 327) holds,
and that initial conditions xo and x0 are given at time to;
the formulas to be used are of index m (i.e., _7m is the
highest-order backward difference used). The goal of
the starting procedure may be regarded as the establish-
ment of the backward difference line at Xo. This requires
the determination of m + 3 quantities; namely, _7_0, for
i = --2, -- 1, 0, 1, ..., m. An equivalent set of ca + 3 quan-
tities is Fo,_-x,'", _-_, _7-_o, and _7-2g0. The quantity
_o is immediately available because _o = f(xo).

The remaining m + 2 quantities must satisfy the m + 2
simultaneous equations obtained by using Eq. (282) with
n = 0, s = 0. To compute _, which is used for determin-
ing V-_'o, see Eq. (281) and Eq. (284) with n = 0,
s = 0, 1, "', m (it should be noted that this system of
m + 2 equations is nonlinear if [ is nonlinear; hence, it
must generally be solved by some iterative method).
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pro--

The specific organization of the starting procedure is

as described below (Ref. 16, p. 35). To obtain the starting

algorithm, proceed as follows:

(1) Obtain a step size h (see Section VIII-F).

(2) Assume two-body motion, and compute Taylor

series coefficients xoU_/][ at to (for the actual com-
putation of these coefficients, see Section VIII-E-2).

(31 Compute an initial estimate for x, and _,i =

-1,...,-m by u_e of the Taylor series approxi-
mation

6

X(I)

x(J) .

= = (/-1)! (at,)J-,

where at_ = ih (i = -1, "", -m) and X_oj) is the ]th
derivative of x at to. The quantity xCJ_/]! is given
by Eq. (3081.

Also, compute J_ = f(xo); let x[ and i[ denote the

vth estinaate of x_ and of xi (thus, initially, v = 0).

(4) Compute the accelerations

£[ = f(x[), i = -1,-2,'",-m

for points t-a, t_=, ..', t_.

(5) Compute a backward difference line at to.

(6) Compute _7-af(xo)= _7-_'o using Eq. (282), with

s = 0, to obtain

m

_-,f(x..) = V-'E, = h-':_. - '_ bdO ) V *_:,,
l=0

(328)

Hence, with n = O,

V-'f(_o)= V-'_,, = h-,_,,- _ b_(O)V' _,
I=0

(329/

(7) Compute _7-_[(xo)= _7-'_o using Eq. (284), with

s---0,

V-"f(x,)= V-"_c',,= h-"-x,, a,(0) V l_.

(33O)

so that, with n=0,

9/I

V'Zf(xo) = V-"E, = h-"xo -_. adO) Vz_.o
l=-I

(331)

(8) Compute new estimates of x__,, i = L"', m, using

Eq. (284), with s = 1, 2, ..., m and n =.0, to obtain

x TM i = 1, ..., m; i.e.,

x_÷_ = h_ _ ads ) Vz_[ (332)
|=_o

"_÷_ i = 1, ...,m (the new esti-Similarly, compute x_x ,
mates of x_, using Eq. (282), with s = 1, 2,..., m,

and n = 0, so that

ol

__ia = h ____a=_bds) V __ (333)

(9) Go back to step (4).

The algorithm is complete when the difference between

two successively computed difference lines is "small;" i.e.,

when E_, the_maximum relative error at the yah iteration,

Ev = max E_(*), _ = x,y,z

where

/_,(x) =
max l(v,_:) - (v,_:-,)I-_¢- | -<m

max (V_£r-q I , x-'->y,z

(334/

is less than some specified tolerance e.

In general, a maximum number of ,/ iterations is
allowed. If ,/ iterations have not yielded convergence,

appropriate steps must be taken; e.g., reduction of the

mesh size h (see Section Viii-F-2).

The starting method described above is used at the

very beginning of a trajectory and whenever a discon-

tinuity is encountered (e.g., when the spacecraft enters
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or leaves the shadow of a body, when a finite motor burn

occurs, etc.). An exception is the case of an instantaneous

maneuver (motor burn or spring separation), when an
extrapolative restart method, which is described in the

next section, is used.

Let it be supposed that the integration is stepping from

t,,, to t,, and that, in this time interval (say, at t'), a

discontinuity occurs to which the Taylor series starting

procedure is applicable. The present integration step is

then completed, a new step size h' is computed (see
Section VIII-F-2), and a new solution is started at the

disconti_.auity (or in the near neighborhood of the dis-

continuity). The initial values x' and _' corresponding

to t' are obtained by interpolation, by use of Eqs. (288)
and (289), as described below. Let

tl t -- t f

sa = T (330")

(it should be noted that, in general, s' is not an integer).
Then

x' = x(t') = h 2 _ at(s') _7_, (336)

;Y = ;c(t') = h _ _ b,(s') _7'_ (337)

where the coefficients a,(s') and bi(s') are computed s' as
follows:

t

a,(s') = aj(0) c,_j(e), i = -2, .-1, 0, 1, ...,m

(338, _

where

n-s'-I
c.(e)- c._,(s')

n

co(e) = 1
(339)

for all s' (compare with Eqs. 321 and 322), and aj(0),

= -2, ..., i, are given by Eqs. (305) and (306), with
s = 0; also,

t

b,(s') = _-ab_(0) c,_j(s') (340)

84Warner, M. R., et al., JPL internal document, Oct. 30, 1908.

where the b j(0) terms are given by Eqs. (314) and (315),

with s = 0, and the c,,(s') terms are given by Eq. (339).

Defining h ------h', to _ t', Xo -- x', and _o _ k', one should

go back to step (2) of the algorithm described above to
start a new solution at t'.

If tLe discontinuity is time-dependent (e.g., a finite

motor burn), it is easy to determine t. However, if the

discontinuity is position-dependent (e.g., when the space-

craft is entering the shadow of a body), the time of the

occurrence of the discontinuity must then be computed

(usually by some iterative method).

It should be noted that some of the mathematically

treated discontinuities are not genuine discontinuities in

the physical sense. For example, censider a phase change;
the actual spacecraft traiectory is smooth as the space-

craft leaves the sphere of influence of one body and

enters that of another. However, mathematically speak-

ing, the spacecraft has encountered a discontinuity: a

new force is acting upon the spacecraft beginning at a

certain time t. Another imaginary discontinuity occurs
when the oblateness of a planet or the moon becomes a

significant term in the total acceleration of the spacecraft.
At some point in time, oblateness is "turned on"--a

discontinuity in the mathematical description of the

motion ef the spacecraft; from the physical point of view,

howew_r, oblateness has been contributing to the acceler-

ation of the spacecraft at all previous time points.

2, Computation of Taylor series coe_cients. Starting

the integration process by the method of a Taylor series

expansion requires the computation of the first n coeffi-

cients of this infinite series. It was stated above that, ff
the Taylor series starting method is used, the actual

differential equation

_ __X /'t
r._ + g ix, _c,t), x-# Y'z (341)

is approximated by the two-body equation

r"_ , x--, y,z, r = (x_ + y_ + z_) '/"

(342)

Moreover, itmay be assumed that the initialvalues x.

and xoare given atthe time to.
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For short intervals of time, the solution of Eq. (342)
can be expanded in a Taylor series about to; i.e.,

x(t) ----Xo+ _o(t - to) + _ _o(t- to)-'_....

1
+ -IT.x'o,_(t - to)"+ ... (343)

Because Eq. (842) may be written

= Fx (344)

where

'_'= Fx-t-Fk (346a)

x(" : 1,'x + 21,'k + F_" : (ff + F =)x -t- 2F_ (346b)

x,,, = (F + 4F1;')x + (3i_+ F_)_ (340e)

x'"' = (v'" + 4vi/+4_" + aF'P + F,) x

+ (i_'+ 4r_ + a'b + 2F_) _'

= (F") + 7FF + 4/v"+ F') x + (4F,"+ 6FF)

(346d)

where (in this subsection)

(and £o = Foxo, which defines Fo), by successively differ-
entiating Eq. (844) one obtains

(347)

Clearly, this process of successive differentiation can be continued indefinitely. However, working only to the sixth
order, and substituting Eq(s). (346) into Eq. (343), one obtains

_., _ (_oX_+CoCo)(t- to)_+_ [(/_o+ F:) _o+ 27.o_o](t - to_x(t) = Xo+ _o(t - to) + VoXo(t - to)=+ "fiT.

1
+ _ [(i_o + 4FoFo) =o + (3i_o + V_ ) _o1 (t - to)'

1
+ _T[(Fo (') + 7Fo/_o + 4/_ + F_)xo + (4F'o + 6Fo/_o) ko] (t - to)° (348)

From collecting eoeflacients of xo and _o, it foUows that

[ 1 _ 1 (_o+F_)(t_t.),x(t) = 1 + _ Fo(t - to)2 + Fo(t -- to)' +

+1_ 61_ o +7FoFo+4F_+F3o)(t-to) _]5! (F+ 4F°F°)(t-t°)8+I IF(""_ x°

+ (t -. to) + _ Fo(t - to)_ + -_. _ (3Fo + F_) (t - t°) _ + _ (4Fo + 6Folio) (t - to)" Xo

_-- t(t) x,, + g(t) 2o (349)

where

.8

f(t) -- _, a_(t - to)'

g(t)-------_t,#--to)_
1=0

(850)

JPL TECHNICAL M.MORANDUM _3-45| 67

i



The aj and bj terms may be expressed in terms of F
and its derivatives, evaluated at t = to, by comparison of
Eq. (849) with Eq(s). (350); thus, it remains to compute
tile derivatives of F. Because

Thus,

d
'3? (r_)= & + 2cr (859)

F = -/_r -3, r = (x" + y2 _}_z..,),/, (851)

it follows that

and Eq. (858) m_y be written as

= 8_,I-St-' (r_)-_+ _:_ + 2Cr_]

Then

(860)

where r_ = x_ + gO + z£ is obtained by differentfating
r" = x" + y_ + z _ with respect to time. Then

[ d]
d

= 8_ I-St-' (r,)2 + r- _- (r,)] (858)

From Fig. 7, one finds that

• r = _. _ = I_ I" I_ Icos (_,_)= _ cos (_,_)= _i

(854)

so that

a (rt)= a

r
(855)

The vis-viva integral gives

v_ - (856)
r a

where a is the semimajor axis of the conic on which the
spacecraft moves.

Defining

(857)2C_- -_-

and substituting this quantity into Eq. (856) yields

v2 o/_= -- + _c (8_s)
r

68

- 6/zr -8(r_) - 10Cr-r(r_)]

= 8t_ [85r -9 (r?)_ - 16/_r'S(r_) -- 80Cr-r(r_)]

Differentiating Eq. (861) once more yields

(861)

F ('_ = 8_ [-.815r_:(r_) ' + 288¢r-_O(r_:)_+ 420Cr -_(r÷)_

-l'3t_r" - 62CFr-s--60C_r-_] (362)

The vis-viva integral (Eq. 858) may now be used to
eliminate 2C from Eqs. (858), (861)_ and (862). This gives

i_ = 8_(-5r_ _ - _,r '_ + v:r -_) (8_)

F"= St, (85t_ _ + 14_r-'_-15v_r-_) (864)

,,,,,

F (*) = 8t_ (--815r"/_ -- 187t_r-s__ + 210v_r"_ _

--14_,_r-_ + 291_v_r-_ - 15v'r-') (865)

If Eqs. (845), (852), and (368) through (865) are now
used in Eq. (849), and compared with Eq(s). (850), one
finds that

ao = 1 (366a)

a-___lL_ (366b)

i 1
a_ = _ Fo = - -_'/_r; _ (366e)

1 1
a_ = _/_o = -_- _r_' _'o (366d)

_'"a,= (Fo+F_)

1
= _" (-15/_ro' r_o- 2t_r_ + 8/_v_ t0_) (366e)
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'(

1 (ft. + 4Fo150)

1 6 3

= _'(7/_ro _5 4 2_,_'ro7_o- 8_,v_ ro_,, ) (366f)

1
= _-. (Fo") + 7 FoF. + 4/_ + F_)a_

1

= -_-(-945t_rg _ - 420K'?_" r_ + 680_v_, r_' _

-22t_Sro t' + 66t_2v_ ro" - 45t_v_ r_') (366g)

and, for the coefficients b_,

bo = 0 (367a)

b, = 1 (867b)

by := 0 (867e)

(867d)

i
= T t_r°' _" (367e)

1

1
120 (-45_r°5 ?_ -- 8t_2r°° + OrgY2°to?) _.. (367f)

1 (4Fo + 6Fo/_o)bo=_.

i
= "_- (14tzr; e _ + 5t_2ro7?o - 6t_v_ ro8 ?o) (367g)

Thus, Eqs. (866) and (867) represent the desired coeffi-

cients in Eq(s). (850).

where the coefficients ai, b_ arc given by Eqs. (866) and

(367).

3. Extrapo_tive start. The Taylor series method for

starting a multistep integration procedure is a "true"

starting method because it can, in general, always be

used, although certain difficulties may occur if this ap-

proach is used in some instances (see Section VIII-E-I).

In contrast, an extrapolative start depends upon a pre-

viously computed difference line.

Let it be assumed that one is in the process of inte-

grating from t._t to t,, with step size h, and that an
instantaneous maneuver occurs at time t in this time

interval. The present integration step is then completed;

i.e., the position xn, velocity _., acceleration £,, and dif-

ference line Dt_,_ = [_7_] are available. After a new

step size h' (Fig. 37) has been determined (see Section

VIII-F), position and velocity values at t_ = t and at the

m points to the left of t_ must be computed; i.e., at t'_t, t'__,

"", t'_m, where t'__ - t'___t= h'. This is achieved by using

Eqs. (288) and (289) as described below. Let T = value of
time for which interpolated values are desired, t_ - mh

< T < t, (clearly, t'will be the points t', t__x, ." ", t'-m), and

tn -
s' = --'h--- (869)

(s' is, in general, not an integer); then

and

Finally, comparing Eqs. (849) and (850) with Eq. (848), I
one finds that '"*

n$

Xo (l)

i! - a_xo + b_o, i = 0, 1,..., 8 (868)

(s7 )

where the coefficients a_(s') and b_(s') are computed

according to Eqs. (888) and (840).

h _ h I

trl.| _ t

t'-3 C-2 C-I CO = t

k _ __.)
Y

h

Fig. 37. Step sizes h and h'

,i

:?
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• _,t •tLet x,',, x'__, '", x'_,,, and x_, x_L, ..., x_,, denote tile
positions and velocities (corresponding to time points

t_, t'__, ..., t',,) obtained from Eqs. (870) and (371). These
values must be corrected for changes in position and

velocity occurring during an instantaneous maneuver

(see Section VII-D); laence,

x_ --=x_ + ax + ati a._, i = 0, -1, ..., -m (37._)

ati = t," - t_

x_x_ +ak, i = 0, -1, ..., -m (a7s)

where t_x, A_ must be supplied (see Section VII-D).

The values obtained from Eqs. (872) and (378) may then
be used to compute a new backward difference line

at go = t by using the algorithm (steps 4 through 9)
described in Section VIII-E-1. Once a difference line has

been found to the desired accuracy, the actual integration

process is started to advance the solution from t' to t_.

F. Control of Step Size h

When a numerical integration procedure is applied to

solve a differentia] equation, it is most important to select

the optimal step size h. Two principal factors determine
the choice of h:

(1) Accuracy.

(2) Integration time (and cost).

In general, the accuracy of the solution increases as

h decreases (to a certain limit, that is; if h becomes too

small, round-off error grows). However, the smaller the h,

the more integration steps are required to integrate over

a given interval; hence, the total integration time
increases as h decreases.

Two methods are used, as described in the two sub-

sections that follow, to select a step size h: (1) finding

h from a range list and (2) computing h by an automatic

step-size control procedure. For stability reasons, a maxi-
mum and a minimum step size h,,,, and hm_, must be

given; these two quantities limit the largest and smallest
h that may ever be attained by either of the two methods

for controlling step sizes.

1. Step.slze control by range llst. Associated with each

celestial body is a range table and a step size (in seconds).

A range table consists of a series of up to 12 in.creasing

positive numbers, which are used to define a pattern of

concentric annuli centered at the given body. T]:e st_:p

size h associated with such a pattern is used to generate
a series of step sizes, each of which is internal to a

particular annulus. The step size h itself is used within

tbc central annulus. In the nth annulus, tlac step size to

be used is h • 2 '-_. Thus, in passing from inner annuli to

adjacent outer ones, the step size doubles.

A step size is obtained from the range list at the very
beginning of a trajectory, and also at physical central

body changes. If the spacecraft is entering the sun phase,

the step size is left unchanged. This ia because the step
size, as determined from the range table for the sun, is

usually many times larger than the step size at the same

point in space a._ determined by the range table of the

celestial body from whose sphere of influence the space-
craft is emerging. A sudden increase in step size of more
than two or three times would introduce errors of such

magnitude that the starting procedure would fail to

converge. If the spacecraft is entering the sphere of

influence of a celestial body other than the sun, the step
size is determined from the range tables in the manner
described above.

Because the position vector of the spacecraft is referred

to the integration central body, and because the integration
center may be different from the physical center, a ta'ans-

lation is made to the physical central body (PCB). If the
PCB has not changed, and the spacecraft is still in the

same annulus,, the step size need not be recomputed
because the original computation would still be available.

When the solar pressure, attitude control, or motor

burn models are on, a maximum step size (specified by

input) will be passed to the integrator. If the step size,
as determined from the range tables, exceeds this maxi-

m:t.,:, the maximum itself is then returned as the step
size to be used. _5

In other words, the step size associated with a dis-

continuity always overrides the step size computed from
the range list. This is an important poin, because the

integration process has to be restarted whenever a dis-

continuity occurs in the acceleration of the spacecraft,

and, for the starting procedure to converge, the step size
must be softlciently small.

To compute a new difference line for h' = 2h, every

second acceleration of the last 10 solution points is saved,

and another 10 integration steps are taken (with the old h),

every second one of which is saved. Hence. at t" = t' + 10h,

10 accelerations are available with a spacing of h' = 2h. A

z_;zw backward difference line is then formed at t" by use

s_Warner, M. R., et ai,, JPL internal document, Oct. 30, 1968.

,¢¢"
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of tile 10 points that are separated by a spacing h', and

the integration process proceeds with step size h'. Simi-

I_ rly, tile current step size h is halved when tile spacecraft

is moving towards tile integration central body; i.e.,moving
from an outer annulus to an inner annulus. In this case, a

new difference line with the new step size h' = h/_, (where

h is the old step size) is computed according to the

following expressions::_" _

ot

V J,,_(t) = _, ti,., V_ _(t), i = 1,..., m (874)

V_,_(t)= V_:_(t) (375)
9t_

_7_,_(t) = (h')-_c(t) - _.,b,._(O) W_,_(t) (376)
t:o

v_,;_(t)= (h')-' x(t)+ V_,;_(t)- T_a,+,(0)Vb_.
i=0

(377)

Equations (878) and (877) follow immediately from Eqs.

(289) and (290), with s = 0.

The coefficients Hi._ in Eq. (874) are given _r by

1
Ha,, = -_- (378a)

H_j = (1 - _1) Hi,j-l, ] = 2, ..., m (378b)

J-$+l

H_,j = Y_ H_,_ Hi-_,j._, i = 2, '", m; ] = i, ..., m

(a7Sc)

The first time step in the inner annulus is denoted

by t = t'. The integration process is then continued at
time t' using the backward differences computed in

Eqs. (874--877).

9. Automatic step.size control. When the integrator is

operating under automatic step-size control (ASC), it is

checked at each integration step to see whether h should

be reduced, doubled, or remain unchanged. The quantity

that determines the change (if any) to be made in h is the
local truncation error, which is defined as the difference

between the exact solu_un of the difference equation and

that of the differential equation. Automatic control over

s"Warner, M, R., et al., JPL internal document, Oct. 80, 1968.
srlbtd.

JPL TECHNICAL MEMORANDUM 33-451

the truncation error during thc step-by-step integration

ensures that tile difference equations will represent a

good approximation to the differential equations; step-size

control is a good method to limit truncatiorr error in an

Adams-type numerical integration method.

Tile truncation error E in a difference line is approxi-

mated by the relative amount that the first neglected

difference would haw' contributed to the position vector 3"

where

= h" I_,,_,It v m.r i (379)
Irl

= (_,E _)

r= (x,y,z)

h = current step size

am,+1

a_h

(m+l)st coefficient of Eq. (288)

computed according to Eq. (806),

with s = 0, if predictor and corrector

are used in integration procedure

(m+1)st coefficient of Eq. (288)

computed according to Eq. (806),

with s = 1, if only predictor formulas

are applied; or predictor formulas

are applied and corrector formulas

are applied to solution x(t) and _(t),
but not to difference line

Two given quaatities E_,_ and E,,,, are the upper and

lower bounds on truncation error; throughout the inte-

gration of a trajectory, the truncation error is kept between

Emt, and Em_ by appropriately changing h. After each

corrector cycle, the truncation error is eamputed according

to Eq. (379).

The_current step size h will be reduced to a new h' if

E,.,__<_ (aSOa)

and

h.,. < h' (S8Ob)

._Talbot, T., JPL internal document, Feb. 3, 1969.
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Step size h will be doubled ff

E... >_ E

and

(881a)

The integrator will try a maximum of four reduced

step sizes when doing a restart. If the converged dif-

ference line with the fourth reduced h does not satisfy

E < E,,,_x, the program will terminate with an appropri-

ate error message.

2h _<h.... (SSlh) The reduced h' is computed a9 according to

where E is the truncation error.

At time t,, if E _< Eml,, then 10 more steps are taken

at the current step size h. Provided that the condition

E < E.,, remains satisfied for each of these 10 steps, a

new difference line is formed for a spacing 2h by differenc-

ing every second acceleration of the last 20 accelerations

(which were computed by use of h). On the other hand,

ff E > E.,_ at time t,, the current step size hotd must be

reduced to, say, h' to keep E between Emtn and Em_. The

change to a smaller step size requires a complete restart

of the integration procedure, as described in Section

VIII-E-1 (see Eq. 888, below, for the computation of a

reduced step size h').

When restarting the integration procedure, one must

perform a special truncation error evaluation after the

convergence of the starting procedttre. This evaluation is

necessary because convergence of the starting procedure

is not dependent upon truncation error.

The convergence of the starting procedure represents

the iterative solution of m algebraic equations in m un-

knowns (see Section VIII-E-I):

_(t- sh) = _'_ c,(s) V'x(t), 1 < s < m (882)
t=0

(this is a repetition of Eq. 290).

The convergence of this system of equations will be a

good approximation of the differential equatiotis only ff
the truncation_erxor is within the limits of Emt, and E,,_.

The first neglected difference, which is normally used

to approximate the truncation error, is not part of the
iteration computation. The last retained difference is used

in place of the first neglected difference when computing
the truncation error. This truncation en'or E is then com-

pared with E.,._. If E <_ E,..x, the integration process is

resumed with h'; otherwise, a new h" is computed, using

h' as the oid step size, and the entire starting procedure
is repeated.

72

h'= ho|,t1,0'27"" If/t° ( 83)

where E is the truncation error at step size ho_dbased upon

the last retained difference in Eq. (879).

G. Reverse Integration

The program has the capability to integrate a tra-

jectory backward in time. AI] the formulas for forward

integration apply, with the step size h now being nega-

tive for reverse integration.

IX. Differential Correction Process

The single most important tcol in the definitive deter-

ruination of a spacecraft trajectory from observation is

that of differential correction; such procedures have been

employed for the improvement of orbits (e.g., of comets)
since Gauss.

Given a priori estimates of the parameter vector q, the

components of which are the so-called "solve-for pararn-

eters,"the spacecraft acceleration is integrated (see Section

VIII) using second-sum numerical integration methods to

give position and velocity at any desired time. Use of the

spacecraft ephemeris, along with the ephemerides for

the other bodies within the solar system and the parameter

vector q, allows computation of values for each observed

quantity (normally doppler, range,or angles).The residuals

AZ are then computed as the difference between the

actaml observations and the observables computed from

the ephemeris of the spacecraft. In addition to integrat-
ing the acceleration of the spacecraft to obtain its

ephemeris, one integrates the partial derivative of the

spacecraft acceleration with respect to the parameter

vector q, using the second-sum numerical integration

procedure to give the partial derivative of the spacecraft

state vector X (position and velocity components) with

respect to q; i.e., _X/_q. Using _X/aq, one computes the

partial derivative of each computed observable quantity z

with respect to q; i.e., _z/_q, Given the residuals Az

S'Talbot, T., JPL internal document, Feb. 8. 1969.
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7z/_q and the weights applied to each residual, along

with tile a priori parameter vector and its covariance

nmtrix (Ref. 17, p. 32), one computes tile differential

correction Z,q to the parameter vector.

Starting with q and Aq, one.computes a new spacecraft

ephemeris, residuals, and partial derivatives, and a second

differential correction is obtained. This process is repeated

until convergence occurs and the weighted sum of squares

of residual errors between observed and computed quan-

tities is minimized (Ref. 18, p. 24).

Differential correction is applied for two conceptually

different purposes. One application considers the effect
of errors in the observational data themselves. For the

other application, let it be supposed that a preliminary

traiectory has been computed on the basis of some simpli-
fied physical model (e.g., assume only two-body forces)

or on some simplified trajectory (e.g., assume a hyper-

bolic or elliptic trajectory ). Even ff perfect observational
data are given, subsequent observations would not neces-

sarily agree with what they were computed to be on the

basis of the preliminary trajectory.

The quantities that are usually differentially corrected

are a priori estimates made to minimize the sum of

weighted squares of residual errors behveen observed

and computed quantities. These estimates include injec-

tion parameters, physical constants (implying that they

are not actually constants; that is, their numerical values

are subject to improvement---e.g., the astronomical unit
or the speed of light), maneuver parameters, and station
locations.

A. Interpolation and Differential Correction of Basic
Planetary Ephemerides

Predictions of the motion of celestial bodies can be

presented in either of two forms: (1) as general but com-
plicated formulas, with time as argument, from which

position at any epoch can be computed; or (2) as tables

listing discrete, prespecified epochs, from which positions

at other than tabular epochs can be obtained. These

tables are called ephemerides.

It has become customary to rely exclusively on ephe-

merides for astronomical work involving lunar and

planetary motion because the labor required for the

preparation of an ephemeris can be allocated to the solu-

tion of many differeot problems.
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1. Interpolation. The basic planetary ephemeris data

consist of predictions of lunar and planetary positions

and of the corresponding velocities. The ephemeris, data

are usually given in heliocentric coordinates for the

planets and the earth-moon barycenter and in geocentric
coordinate._ for the moon. However, coordinates referred

to any of the bodies as center may be obtained by a

translation of centers (see Section VI). As the planetary

position ephemerides are tabulated at 4-day intervals (an

exception is Mercury, whose data are given in 2-day steps)

and the lunar ephemeris at _A-day intervals on a standard

ephemeris tape used at JPL, it is necessary to use an

interpolation scheme to obtain intermediate values of

positions and velocities. An Everett's formula that uses

second and fourth differences is usually employed for the

positions and velocities; the formula used (Ref, 19, p. 278)

is given by

u(u' - 1) t(t 2 - 1)
x(Tj) = uxo + tx_ + 8! a_0 x0 + 8"-'-F-- A_ X_

u(u2- 1)(u - 4)
+ 51 a.,o Xo

t(r- - 1)(t - 4)
+ 51 a',,_ x, (884)

where

h=

T_ =

t--

desired Julian date, T_ _< Tj < Ti + h

step size of data

point in time at which data are tabulated

(Ts - T_) 0 < t < 1
h '

u=l--t

Xo= x(Ti)

x, = x(Ti + h)

A_i = nth modified difference

The modified differences are intended to facilitate the use

__ of Everett's fifth-order interpolation formula by "throwing

back" sixth- and eighth-order differences on the second
and fourth differences:
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l

wllere

a26

a,.,8

a_..__-

a4s =

ordinary central difference of order k

-0.018120

0.004299

-0.278269

0.068489

(Ref. 20, p. 6).

Planetary coordinates for centers other than the sun are

obtained by the vector subtraction

P = Po - C (887)

where

P = planetary coordinates referred to desired
center

Po = planetary coordinates referred to sun

C = heliocentric coordinates of desired center

A corresponding vector subtraction is performed for
velocity vectors.

Calculation of the heliocentric coordinates of the earth

or the moon----or the geocentrle or selenoeentrie coordi-

nates of the sun and the planets--requires additional
manipulation. Heliocentric lunar and terrestrial coordi-
nates are obtained as

M = B + _L (888)

E = B + L (389)

where

M = heliocentric coordinates of moon

E = heliocentric coordinates o.{ earth

B = heliocentric coordinates of earth-moon

baryeenter

L = geocentric coordinates of moon

P"-- Ps +Px

_M

#e
#x + #M

74

where

_ = gravitational constant of earth

t_u = gravitational constant of moon

(Ref. 21, p. 19).

2. Differential correction of basic ephemeddes. Basic

ephemeris information for each of the planets, the earth-

:noon barycenter, and the moon can be obtained from

standard ephemerides by interpolation, as described

above. Because the differential correction process makes
it possible to solve for corrections to the orbital elements

of the ephemeris hodies, the interpolated ephemerides

are also subject to correction.

This is accomplished by solving for corrections to an

osculating orbit (i.e., a two-body orbit that yields the

given ephemerides at a chosen epoch), then projecting
these corrections to the desired epoch, assuming that

this deviation from the osculating orbit may be added to

the ephemerides. Thus, the corrected heliocentric position

and velocity vectors of a planet or the earth-moon bary-

center (see Ref. 7, p. 24) are given by

_P

reorr = reohemA_: + _ AE, km (890)

0i"

/".... = _,,h._mAE + "g-K aE, km/s (891)

Similarly, the corrected geocentric position and velocity
vectors of the moon are given by

_P

rcorr = r,p,,mR_ + _ _E, km (392)

21"

/',o_,. = i,.p,.mR_ + -_- aE, km/s (898)

where

Pephem_ rephem interpolated ephemeris position and

velocity vectors of planet or earth-

moon baryeenter relative to sun in AU

(Eqs. 890 and 891); interpolated

ephemeris position and velocity vec-
tors of moon relative to earth in di-

mensionless lunar units (LU) (Eqs.

892 and 893). The lunar unit differs

only slightly from the equatorial ra-
dius of the earth.
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E

8r/SE, 8_/8E ----

hE=

conversion factor from AU to km

conversion factor from dimensionless

LU to km

osculating two-body orbital elements

for heliocentric ephemeris of planet

or earth-moon barycenter (Eqs. 890

and 891) or geocentric lunar ephem-

eris (Eqs. 892 and 898)

partial derivatives of position and ve-

locity, respectively, of osculating conic

with respect to orbital elements__see

Ref. 8, p. 241, Set III)

solve-for corrections to osculating or-
bital elements

Each of these vectors has rectangular components re-

ferred to the mean earth equator and equinox of 1950.0;
i.e., the x-axis is along the mean equinox of 1950.0, the

z-axis is normal to the mean earth equatorial plane of
1950.0 directed north, and the y-axis completes the right-

handed coordinate system.

The partial derivatives of ephemeris position and

velocity components at time t with respect to orbital
elements 8r(t)/SE, 8_(t)/SE are computed from orbital

elements of an osculating conic to the ephemeris at input

epoch time to, and _.rom position and velocity r(t), i'(t)

obtained from the uncorrected ephemeris at time t. The

formulation for computing the partial derivatives is

given below, along with the method of computing oscu-

lating orbital elements from position and velocity com-

ponents i'o, i'o obtained from the ephemeris at time to

and from the parameter t_.

B. Part_cd I_erivatives Formulatiofl

The six parameters that are solved for using Set III

(see Ref. 8, p. 241) are ha�a, he, (aMo + aw), ap, hq,

and (ehw), where

a

e_

Mo =

Ap, Aq, AW =

e_

semimajor axis

eccentricity

value of mean anomaly at epoch t

right-handed rotations of P,Q,W coordi-

nate system about P,Q,W axes, respec-

tively, where

vector directed from focus to perifocus
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Q - vector 90 deg in advance of P in oscu-

lating plane

W = P >-:Q (see Fig. 7)

The partial derivatives of ephemeris position r with

rcsi_cct to the orbital elements E, 8n/_E are defined _' by

[Ar = r - T (t - to)_

b
-- (aMo + Aw)+ [Htr + K_i'] he + n

+ (P × r) ap + (Q × r) hq

+ I[W X r- n] (eAw) (394)

where n is the mean motion (see Eq. 16). The auxiliary

quantities_/-/_ and K_ are given by

H_= r-a(l+e 2)
ae(1 - e 2) (895)

K,=_ 1+ a(1-e")' (396)

The coefficients of ha�a, he, ..., (ehw), H_,K_, are de-

veloped in Ref. 8, pp. 288-241.

Differentiating Eq. (894) w_th respect to time defines

the partial derivatives as i. with respect to the orbital
elements _b/SE:

1 . 8 "I ha

El" - -£ (t - to)i_]-7

i:
+ [H2r _W__i'] he + n (AMo + Aw)

+(i _×_)hp+ (Q×i) hq

+ -_-[ W × _ - -_] (ehw) (897)

where

/x
H., =/_, - 7 K,

_ _; 11._ a.[ae(1 - e'O ,
4'Peabody, P. R., JPL internal document, Sept. 8, 1903.

(898)
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K2 = /_, + H,

_ _1 [l_r_ (899)e(1 e'_)\ a/

The partial derivatives of ephemeris position and ve-
locity with respect to orbital elements 8r/BE and 8_/8E,
defined in Eqs. (894) and (897), are computed at time t
from osculating orbital dements a, e, n, P, Q, and W,
computed once at epoch t,; from r, z:, interpolated from
the uncorrected ephemeris at time t; and from i:, r, _,
computed from

r = (r. r)'_ (4oo)

r_ = r •/. (401)

F

= - _ 7 (402)

It should be noted that the auxiliary quantities H_, K_,
H2, and Ks must be computed at each time t. The con-
stants a, e, n, P, Q, and W are computed from position
and velocity components to, _o obtained from the ephem-
eris at input epoch to, and from t_(planet) or t_(moon)
given by

t_(planet) = tz,_+ tt_, kms/s _ (408)

where

t_p = gravitational constant of planet

/_s = gravitational constant of sun

and

_(moon) = t_: + t_g, kmS/s " (404)

where

t_s = gravitational constant of earth

_,, = gravitational c_nstant of moon

Given r,, bo from the ephemeris at to in AU and AU/s,
or LU and LU/s, let us compute

ro= (to• to)" (405)

_ = io • _,, (400)

ro_o= roo 6o (407)
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The semimajor axis a in AU or LU is computed from the
vis-viva integral as

1 2 g_
_w-- mm (408)
a r 0 /x

The mean motion (see Eq. 16) is given by

(p,)t/2

n- a3/2 (409)

Compute

e cos Eo = 1 ---r° (410)
g

where Eo is the eccentric anomaly at to.

Equation (410) follows directly from the equation of
an ellipse in polar coordinates

r = a (1 - e cos E) (411)

Differentiation of Eq. (410) yields

_o
e sin Eo = _ (412)

To compute/_o, one should note that the mean anomaly
M (see Eq. 17) is given by

M = Mo + n(t- to)

= Mo + a -3/2 (/_)1/2 (t -- to) _ E - e sin E

Differentiation with_respect to t yields

= a"3/_(t_)1/_ = (1 - ecos E)

or

(-_)'_ a (1-ecosE)E (418)

Using Eq. (411), one may rewrite Eq. (418) as

JPL TECHNICAL MEMORANDUM 33-451
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By evaluating/_ at to, one obtains

/_o = 1 (---_ v" (415)
ro \a/

Substitution of Eq. (415) into Eq. (412) yields

roro

e sin Eo = (taT)-'-'-rz (416)

Then

e = [(ecosEo) _ + (esinEo)_] v" (417)

e cos Eo
cos Eo - (418)

e

esinEo
sin Eo - (419)

e

where e cos Eo and e sin Eo are given by Eqs. (410) and

(416). Furthermore,

p = cosEo (_._)_r---"_ ro -- sin Eof'o (420)

(see Ref. 4, p. 119), and

ro X i,o

W = [ca(1 - e2)] _' (421)

Q = W × P (422)

C. Correction to Ephemeris

At epoch tl, at which the corrected ephemeris is de-

sired, the partial derivatives of epheme:>, position and

velocity with respect to .the orbital elements _r(t)/OE and

_(t)/OE are computed as described in the preceding
se_ion.

The accumulated corrections to osculating orbital ele-

ments AE given by

n-1

AE = _'

(e),
(ae),

(ttMo + Atv)l

(ag)_

(caw),

(423)

are obtained from the previous (n- 1) iterations that

were performed (as described in the beginning of this

section) to differentially correct the parameter vector q.
It should be recalled that the corrections to the osculat-

ing orbit are solve-for quantities. Because the ephemeris

is corrected between iterations, file sum of these correc-

tions to orbital elements should converge. 't

X. Summary of ResultsObtained From
Integrating the Equati,-ns of Motion

Upon integration of the equations of motion, the fol-

lowing information is available:

(1) A spacecraft ephemeris (a sequential file of sum

and difference arrays for position and velocity of

a spacecraft).

(2) Planetary and lunar ephemerides.

(3) A list of events involving the spacecraft (such as

closest approach to a certain body, attainment of

a given distance from some body, etc.).

(4) A list of epochs.

It isfrequentlydesirable(e.g.,for a mission analysis)

to obtain pertinentinformation regarding the spacecraft

and the solarsystem at the time of occurrence of these

eventsand epochs.This informationmay be conveniently

subdivided intothree groups:

(I) The body group, which contains items associated

with a given body, such asdistancesfrom the body,

positionand velocityvectorsin the body-centered

coordinatesystem,etc.

(2) The conic group, which contains items associated

with a conic section, such as semimajor axis,

eccentricity, etc,

(3) The angle group; this group contains the angles

subtended at the spacecraft by various pairs of
celestial bodies.

A. Body Group _2

In this section, a/ad in the two sec:'om that follow,

body C is the physical central body (PCB).

Let

= (x,r,z) (4 4)

'tMoyer,T D, JPL internaldocument,Dec.18,1904.
4aWarner,M. B.,etal.,JPL internaldocument,Oct.30,1968.

.,,..:
t_

4_
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and

= (x,r,z) (425)

denote position and velocity vectors of the spacecraft
with respect to body C. The distance R from the space-
craft to the center of body C is then given by

R = (X2+ Y_+ Z')y' (426)

The declination angle ¢ of the spacecraft (Fig. 38)--
i.e., the angle between the spacecraft and the equator
measured in a plane normal to the equator that contains
the spacecraft and the center of body C--is measured in
degrees, and is computed according to

¢ = sin-' (Z), -90 < ¢p< 90 (427)

The right ascension of the spacecraft ® (see Fig. 38)--
i.e., the angle measured in the plane-of the equator from
a fixed inertial axis in space (vernal equinox) to a plane
normal to the equator (meridian) that contains the space-
craft--is also measured in degrees, and is given by

0 deg__< 0 < 360 deg (428)

The velocity V of the spacecraft relative to body C is
given by

(429)

The (X,Y,Z) coordinate system is now rotated to the
up-east-north coordinate system (X',Y',Z'). This rotation

is accomplished by a rotation 0 about the Z-axis, fol-
lowed by a rotation • about the Y' axis. The (X',Y',Z')
coordinate system is shown in Fig. 39. The velocity
vector R_* of the spacecraft in the (X',Y',Z') coordinate
system is given by

/°°° i)_p* = 1 --sin @ cos ® _tp

\ --sin ¢b 0 cos _/ 0 0

with

h; ** *_ ",= (Xp,Yp,Z_)

The path angle of the spacecraft F is defined in Fig. 40
(see also Fig. 11). Since

v = (_ + _. + _.)'_ = [(_,), + (_,)_ + (_.,)_]_

(430)

it follows that

F= s_n-' (X--Q-), -90deg < F < 90deg (431)

The azimuth angle of the spacecraft I, also defined in
Fig. 40, is then equal to

_=t.w_(Y-_-*_ Odeg < _ < 360deg (432)
\Z*/' - -

78

If one lets

and

rp = (x,y,z) (433)

_p = (k,0,/:) (434)

denote the body-fixed position and velocity vectors, respec-
tively, of the spacecraft with respect to body C, then

R ---:(x2 + y2 + z,)_ (435)

is the distance of the spacecraft from the center of
body C.

If

= latitude of spacecraft, deg (436)

JPL TECHNICAL MEMORANDUM 33-451



L_

z

BODY C

Fig. 38. Right ascensionand declination
of a spacecraft

and

O = longitude of spacecraft, deg (437)

it is then easily seen that

= sin -1 (-_-) (438)

and

0 = tan-_ (_) (439)

The velocity v of the spacecraft relative to body C is then
given by

o = (_, + r)' + _')_' (440)

Now rotate the (x,g,z) coordinate system into the up-
north-east coordinate system (x',g',z'). This rotation is
accomplished by rotating first about the z.axis by the
angle 0 and then about the [/'-axis by the angle _. The
velocity vector /',* in the (x',y',z') coordinate system is
given by

JPL TECHNICAL MEMORANDUM 33-451

/

z

/
/

Y

Z'

Fig. 39. The vectorR_

J ¥

yi

\

>

Fig. 40. Atiglei P and :£

Z _

= _--si 0 cos# _ •\-sin _ 0 cos _/ _ 0
_t

where

• _-- (Xp,yp,Zp)_; "* '* "* (441)

(Fig. 41).
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/

Fig. 41. The vector/'*

y

0 deg < o- < 300 deg (444)

It should be noted that tile X-axis in Fig. 39 points

in the direction of the equinox; i.e., X is space.fixed,

whereas, in Fig. 41, the x-axis points in the direction of

the intersection of prime meridian and equator of body

C; i.e., x is body-fixed. The Greenwich hour angle H is
defined by

H = ® - 0 (445)

It is convenient to number the sun, the planets, and

the moon in some definite order; a standard way of doing
this is the following:

1.- z'

Fig. 42. Angles 7 and

The body-fixed path ar,gle of the spacecraft y is shown
in Fig. 42.

Clearly,

I = Mercury

•2 = Venus

3 = Earth (E)

4 = Mars

5 = Jupiter

6 = Saturn

7 = Uranus

8 = Neptune

9 = Pluto

10 = Sun (S)

11 = Moon (M)

(I2 = Earth_-moon barycenter)

The position vector of the spacecraft relative to body

i (i = 1,2,...,11) has eomponents

R,, = (x,p, Y,_ z,.) (44o)

y = sin" , -90 deg _< 7 <- 50 deg (442)

where

v = (k 2 4-_- + _)_' =-- [(_*)_ + (0') _ + (_.)2]v, (433)

The body-_ed azimuth angle of the spacecraft _,

shown in Fig. 42, is computed according to

eo

Hence, the distance from the center of body i to the

spacecraft R_p is computed according to

a,. = (x b + Yb + zb) _, km (447)

The spacecraft velocity vector II_p relative to body i has

components i

v,,,= (448) ,;
C;
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thus. the spacecraft velocity relative to body i is given:

lq,p = (:_p + Y_p, Zb)% km/s (449)

Let

and

R, = (x,, r,, z,) (450)

/_, = (_,, f,, _,) (451)

denote position and velocity vectors, respectively, of body

i relative to body C. The distance from body C to body t

is then given by

R, = (X_ + _'_ + Z_ )'_, kr,, (452)

and the declination angle _t of body t relative to body C

is computed from

_i _ Sln-a -90deg _ _,_ < 90deg (453)

If ®_ denotes the right ascension of body i relative to

body C, then

®_ = tan -_ , 0 deg < O_ < 360 deg (454)

The velocity of body i relative to body C is given by

V, = (X_ + i'_ + Z_ )_, _/s (455)

The body C fixed position and velocity vectors of body i

ate, respectively,

r_ = (xi, y,, z0, km (456)

i_, = (_c,, 0,, _,), km/s (457)

Therefore, the body C fixed velocity of body i may be

computed from

v, = (k_ + y[_ z[ )_, km/s (458)

and the longitude 0, of body i is given by

0_ = tan -_ _- , Odeg < O_N 360deg (459)

IPL TECHNICAL MEMORANDUM 33-451

The rate of'change of the position vector in the radial
direction/_ is tim projection of Rp onto the unit vector

pointing in tlm radial direction; i.e.,

as indicated in Fig. 43 (see also Fig. 11).

The angular-momentum vector is equal to

and, since

Rp X Rp (461)

(a, • _)_ = I& x _,1

(see Eq. 93), where v is the rate at which the true anomaly

v is changing, the following relation is obtained"

II_.x/_ I. _80
_= ll_l _ __'V-' deg/s (462)

Let R_ be ehe position vector of the sun with respect

to body C. The sun-shadow parameter for body C, de-

noted by d, indicates whether or not the spacecraft is in

the shadow of body C (compare with Section VII-B,

where the quantities D and D' were computed to deter_

mine if the probe was entering or leaving the shadow

of body C). Parameter d is given by

d- - I_px r_ I sign(_,, _),
I_,1

Thus, ff d is such that

km (468)

o < d < e,AD(C)

where

RAD(C) = radius of body C (464)

then the spacecraft is in the shadow of body C (Fig. 44).

In all other cases, the spacecraft is not in the shadow.

During the integration process, the value of d must

be computed at each integration step. If d should indi-

cate at some time t_ that the spacecraft is in the sunlight,

and that at t,+_ the spacecraft is in the shadow of body

C, then time t' (when the spacecraft was entering the

slhadow) is computed, aL_d the integration process must

be restarted at t'. This restart is necessary because the

81
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SPACECRbFT .___'_R

I%1 ._,

Fig. 43. The quantity/_

solar radiation pressure beginning to act on the acceler-

ation of the spaee:r,',,ft. The s,l_',shadow parameter d+
for body i is, eorrt.:;poi._dingly, given by the expression

d, = - JR,, X (R, -- R_) i [sign R,p • (R, - R,)], km
la.-K,J --

(465)

(Fig. 45).

The altitude of the spacecraft above body C is com-
puted a_ording to

h = R - RAD(C), km . (466)

where R is the distance of the spacecraft from body C
(see Eq. 485).

B. Conic Group'_

From Newton's law of gravitation, it follows that a
spacecraft in the force field of anofll_r body moves on
a conic section. In this section, pertinent information
regarding this conic is eomlLu_ted from three quantities:

d

8oov c t_ = gravitational constant of body C (467)

PN,__SPACmU,Fr = (X 0,Lo,Z o) (468)

fLo = (Xs0, f_o, Z6o) (469)
/-

Rs /_ 4_Warner, M. R., et al., JPL internal document, Oct. 80, lgos.
¢(.¢,vN

Fig. 44. Sun-shadow parameter d

spacecraft entering the shadow of body C means that,
beginning at time F, solar radiation pressure ceases to
contribute to the acceleration of the spacecraft; i.e., the
acceleration of the spacecraft has a discontinuity at
time t'.

When the spacecraft is in the shadow, the value of d
must be constantly monitored to determine whether the

spacecraft is still in the shadow or has already left it. If

the spacecraft has left the shadow, its time of exit (say,
t') is computed, and the integration process is restarted
at/'. This restart is necessary because the acceleration

of the spacecraft has a discontinuity at t" caused by

_OD Y !

sP tcRArr / /

TRAJE _ _.CTORY--" / __.._._Ri SUN

_,_.t_- _SODY C

Fig. 45. Sbi_-shadow parometer di
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where I!:,o and/L0 denote position and velocity vect-rs,

respectively, of the spacecraft with respect to body C in
the space-fixed mean earth equator and equinox coordi-
nate system of_1950.0 (see Section V).

Define

R,_o= IRao i, km (470)

h0o= Ifiool, km/s (471)

The semimajor axis a of the conic on which the space-
craft is moving is .then computed from the vis-viva
integral

(.2 1 ) (472)VZ=_ R a'

Hence, in the present case,

hlo = m

so that

_C_50

a = (474)
-- R_o R_u2/_c " i

Equation (48) develops the equation for the semilatus
rectum p; with the notation in this section, one obtains

from Eq. (48)

P = Rs° (2 - "R-_-) - (RS°" _°) 2t_ (475)

The eccentricity e of the conic is given by the standard
equation

Eqaation (476) may be derived from the basic fm_ula
of a conic in polar coordinates

P (477)r -- 1 + e cos v

Setting v = 0 and v = r, one obtains r_t, and r,,,_; adding
yields

r_l. + rm., = 2a - 2p
1 -- e_"
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or

p = a (1 - e -_) (478)

from which Eq. (476) follows.

Clearly, the spacecraft, makes its closest approach to

body C when v = 0 in Eq. (477). Thus, the closest ap-
proach (or pericenter distance) is given by

P (479)rp=q- l+e

The apocenter distance is computed from

r, = 02 = a (1 + e) (480)

The quantity C3 (also called the vis-viva integral) is
defined as

Ca - tL_ kma/s2 (481)
a '

The quantity Ca constitutes twice the total energy E (per
unit mass) of the spacecraft,

1 2 _c
E=-_v ,-if, km_/s 2 (482)

where R is the distance from the spacecraft to body C.
The first term on the right of Eq. (482) is the kinetic
energy and the second is the potential energy of the
spacecraft.

By the above remarks,

C8 = 2E

2/J,¢
l)2--m

R

For orbit determination, the sign of Cs is impo_ant. If
Ca > 0, then a must be less than zero; hence, the space-
craft is moving on a hyperbolic orbit. If Cs < 0, then
a > 0; therefore, the orbit is dlipti6: If C_ = 0, then
a = o0; thus, the spacecraft is moving on a parabolic
orbit (i.e., the veloci_ of the spacecraft is decreasing
as it moves away from L_dy C, and, as it_ distafice from
C approaches infinity, its velocity approaches zero). The
hyperbolic excess velocity V** is obtain°_l by allowing R
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to tend toward infinity. From Eq. (488), one obtains, in

this case,

Therefore,

V_ = C,_ (484)

v. = (c_)_, km/s (485)

For actual computations, it is necessary to let

C_-- v* ilia [<N
a

= 0 fflal>N (486)

where N is some large number; e.g., 1014 km.

The angular momentum per unit mass, here denoted

by C1, is defined by

cl = Ir oox I (487)

If one computes the cross product in Eq. (487) explicitly,
it follows that

c, = [a_ohi0 - (R,o./t_o),],. = (.¢p)- (488)

where the last equa_ty stems from the fact that, in the

derivation of the standard form of a conic, the quantity

p was set equal to Ci/_:.

The eccentric anomaly E (in the case of an ellipse) is

the angle measured in the c.rbital plane from the x_, axis

to a line c_ntaining the center and another point defined

by the projection of the spacecraft in the y, direction
upon an auxiliary Circle lhat circumscribes the actual

ellipse of motion. Geomet':ically, the eccentric anomaly

can be interpreted by means of Fig. 46 as a function of

the area of sector OPB, as follows:

2 X area (sector OPB)
E -- a-" , tad (489)

In direct analogy, it is possible to define a new variable

for-hyperbolic motion a_

F = 2 X area (sector PBC)
a._ , rad (490)

84

where tile area PBC is defined by means of Fig. 47.

When C_ ¢ 0, the eccentric anomaly is given by

E = tan -1 a(R_o • I1_o)
(a - R_o) (tzca) w ' deg (491)

(see Eq. 66) and, for the hyperbolic case,

F = log [D, + (D_ + 1)v'], deg (492)

(see Eq. 68), where

S0 • hOG

e( Ia_oI)"

The mean anomaly M is defined by

M = E - eslnE, deg

and, in the case of a hyperbolic orbit,

Mn = e sirth F - F, deg

(498)

(494)

(495)

CIRCUMSCRIBING

Yw CIRCLE 1

IOOY MOVING tN
AN ELLIPTIC ORItlT

Fig. 46. Eccentric anomaly E
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HYPERBOLIC

TRAJECTORY

SPACECRAFT

HYPERBOLA

B

(xw, y_)

The time from injection-to pericenter passage TI is
given by the expression

T, --T - (T - Tp) (501)

The maxinmm true anomaly v..... is defined in Fig. 9.
In Section IV-E, the relation

90 deg ___v..... _ 180 deg (502)

is derived, where e = eccentricity.

c

,/

_J

,,T

Fig. 47. The quantity F

If Ca = 0---i.e., in the case of a parabolic orbit the mean
anomaly is computed from

aT)

M -- qD._ + -----2.z deg (496)6 '

(Barker's equation; see Eq. 70), where

M = (/_c)_ (T - Tp) )
k

D2 =" )
(497)

In this case, one sets

E = M (498)

The time from pericenter passage T - Tp is defined by
the relation

M
T - Tp = --, s (499)

tl

where

.=\la3!/ ifc:,

= (_)', if Ca = 0 (500)

JPL TECHNICAL MEMORANDUM 33-45|

The angle between the incoming and outgoing asymp-

tote is equal to 2p (Fig. 48). It should be noted that the
vector R is parallel to an asymptote when R _ oo. Thus,
from the equation of a conic in polar coordinates,

P (5o )
R= l + ecosv

it follows that

1 + e cos v,_, = 0 (504)

BODY C

Fig. 48. Angles p and v....
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as R--_ co. Because

v,,,,= = 180 deg - p

one obtains from Eq. (504)

1 - ecosp = 0

or

(505)

(5o6)

1
cos p = -- (507)

¢

From the half-angle formulas, it follows that

2
cos 2,o = e--7- - 1

2p = cos -I --1 , de s (508)

The deflection angle D_, between the two asymptote

or

vectors, defined by Fig. 49, is then given by

Dsr = 180deg - 2p

=._

DEF

$1

BODY C

Fig, 49. Deflection angle between asymptote vectors

or

The velocity at apocen_er (of an elliptic orbit) Va is

compated as described below. From the vis-viva integral

V_ --/_ "r a

it follows (for the velocity at apogee)

V_ =/_c (¼ _1) (510)

However,

1
a = _ (r_+ r,)

where r_ and rp are the apocenter and pericenter dis-

tances, respectively, from the focus; i.e., from body C, so

that Eq. (510) becomes

v_=_o _ r_+r,

2t_crp

__ /_crp
ar_ (511)

Since

one obtait_s

rp = a (1 - e) (512)

r, = a (1 + e) (5i3)

(i -- e)
V_ = I'.' a(1 + e)

(1 - e)2

(1 - e_)
/'¢c_

P
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Hence,

v_ - _c(1 - e) (_14)
C_

by use of Eq. (488).

Linearized flight time, denoted by T_, is defined as

the time-to-go on a rectilinear path to the center of the
target, and is given by the expression

TL = T_, - _TI (515)

where 44

TF = time-to-go to closest approach (516)

or

/£¢

ATs = _ log e (517)

(laa [ 88_ w [ ke2_lAT, = simh-1[_|
\_c/ \ 2ei

(518)

A derivation of Eqs. (517) and (518) is given in Ap-
pendix E.

Called the lineaHzed time of flight correction for the
target conic, _Ts is used instead of the period P, which
is given by

P = 2_ * 86400 days (519)

The so-caned restricted three-body problem requires
the description of the motion of a body P of infinitesimal
mass moving under the influence of two bodies P1 and P2
of finite mass, which revolve around each other in circular
orbits. This situation is approximately realized in many
instances in the solar system (e.g., a spacecraft moving

in the vicinity of the earth and the moon).

Upon making some simplifying assumptions, Jacobi
was able to integrate the equations ot motion of the
restricted three-body problem. This integral is an expres-

4'Thornton, T. H., JPL internal document, Mar. 1, 1962.

JPL TECHNICAL MEMORANDUM 33-4._I

sion of the conservation of relative energy of body P with

respect to the baryecnter of Px and P,_.In the special case
when Pt and P_ are the earth (E) and the moon (M),
respectively, and P is a spacecraft moving in the field of
E and M, the Jacobi constant is given by the expression 45

c_ = }_._- 2 _/(R_ X (Rb×

R_L

(52o)

(see also Bef. 23, p. 430), where

RE = earth-spacecraft position vector

--- (X_, Y_, ZE)

r¢_ = earth-spacecraft velocity vector

o • •

= (X_,Y_, Zm)

REx = earth-moon position vector

= (Xs,,Y_,,Z_x)

R_ = earth-moon velocity vector

= _ £M, Z_M)

R_ = baryeenter-spacecraft position ve__tor

= R_ - t_bR_x

where

1

= barycenter-spacecraft velocity vector

= Rs -_,_ _

Ra = moon-spacecraft position vector

= (X_, Y_, Z_)

and

R, = IR, I, i = b, E, M, EM

'sWarner, M. R., et al., JPL internal document, Oct. 80, 1968.
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The unit vector, If e -_ 0, then ......

^ 11._oX R._,,,
W50 --

C,

= (W,_o,W_,,o,W_..,o) (521)

where Cx is defined by Eq. (487) as the angular momen-

tum per unit mass, is normal to the orbital plane of the
spacecraft. The unit vector

sin v - IR:,ol e (525)

1) ,=COS V _ e

For a derivation of the last two equations, see Eqs. (54)
and (55).

^ ( - W_o, W,._o,0)
N0o---(W;0o+' W_o) _

= (N,5o, Nv._o,Nzno) (522)

Thus,

/sin v\

v ----tan-' kcO-;-J, deg (527)

points in the direction of the ascending node, and the
unit vector

A A A
_t,o= W°ox N°o (523)

completes the right-handed system (Fig. 50).

If e = 0, the argument of pericenter is not defined; in

this ease, the true anomaly v is computed as

deg (524)

A
i.e., the angle between R,o and Nso.

If a coordinate system other than the 1950.0 system is
requested, one denotes

A i%_ Xli_,l
W-

c,

= (w,,w_,w,) (528)

where

R_n , l_¢z_ = spacecraft position and velocity vectors in

requested coordinate system

c;, = IR,,, x R,,, I

The inclination of the orbital plane to the coord:mate

plane (Fig. 51) is given by

i = cos -_ (W,), deg

• Define

BODY C 50

I _ / _ _ ""-'EQUATORIAL PLANE

_50 .e/_-.-____ .............. 01_ IIODY C^ _/
^ ^ A

Fig. 50. The vectors W, N, and M

and fl, the longitude of the ascending node, is given by

o (_

A i_(i )

tr,=_

= (V_,.U.,_,v,,) (529)

A

^,.,,,..v.= '", .,,,
= (v_, v,,, v,,) (530)
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I

Fig. 51. The vectors U, V, P, and Q

where

R., = IR.,I
A A

Thus, Ux and Va are perpendicular to each other.

Ly

A
T|j[e unit vector P points in the direction of perifocus;

i.e., P is along the x_-axis. Clearly,

^ 1_ ^P=cosv x-sinvVt

The unit vector _ is normal to P; thus,

A A A
Q = sinv U_ + cos v V_

= (Q.r, Q., Qz) (532)

Hence, in matrix notation,

(oosvs nv1sin v cos v / V1

The argument of pericenter o_is then given by

(P--)
A A A AAA

To align the P,Q,W triad with the I,J,K triad by per-
forming rotations through the angles f_,i,o,, it follows that

or

iilEcossin0= -- sin _ cos _ 0

0 0 1

A
P

A
Q =

^
W

1 0 0
0 cos i sin i

0 - sin i cos i
Ecos sin -- sin ',! cos f_

0 0

(COSo, Cosf_ ) / coso_sinf_ ) (sm. sini)-- sin _ cos i sin fl + sin co cos i cos 0

- sin°cos. )cos _ cos i sin

(sin f_sin i)

cos oJ sin i
cos fl cos _ cos i

(-.m,o0 o)

^q
I I

Y
I

I

g#

K

so that

JPL

Pz = sin v sin i

_s = cos (o sin i

TEGHNICAL MEMORANDUM 33-451

(534)

and Eq. (533) follows.

The impact parameter vector B is defined as a vector
originating at the center of the target planet and directed
perpendicular to the incoming asymptote of the target-
centered approach hyperbola (Fig. 52). The magnitude of
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PATH OF SPACECRAFT

ASYMPTOTE

A'
Fig. 52. impaCt parameter vector B

B (Fig. 53), which is denoted by b, may be computed as
follows:

b
-- a"_" = sinp = (1 -- eos2p) v'

But Eq. (507) states that

1
COS p _

e

Substituting Eq. (537) into Eq. (5_6) yields

---_-= 1- - e

so that

(536)

(537)

b = a (e2 - 1) _"

For a hyperbola, a < 0; hence, one must take

b = -a (e_ - 1)v"

(538)

(539)

or

b = [a' (e' - 1)1" (540)

\

Fig. 53. Magnitude of vector B

:BOLA

P

r = 1 +ecos8

HYPERBOLA

Fig. 54. COordinateS of vector B

From Fig. 54 it can easily be seen that

X = bsinp

Y = bcosp

Thus,

(541)

X=-a(e _-1) n 1--
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t

or

and

(e'-'- 1)
X = -a (542)e

e = -a (e_- 1)_ (543)
e

by use of Eqs. (587) and (589).

Thus, vector B may be written as

B--Xt - e > 1 (544)

where X and Y are given by Eqs. (542) and_ (548).

When e _< 1, no asymptote exists, and B is not prop-
erly defined. However, one can still formally write

n = z _, _< 1 (545/

where now

z = a (1 - e2)% e < 1 (546)

Clearly,

= (s., s., B,) (547)

As a spacecraft approaches a target planet, it becomes
necessary to consider the attraction of the planet on the
spacecraft, as th:s effect tends to increase the probability
of making a landing. The radius of the effective cross
section of the predominant gravitational attraction of the
target planet is called the collision parameter, or B vec-
tor impact radius (Fig. 55), which is denoted by B_n (see
Ref. 3, p. 273). It is evident that a spacecraft approach-
ing the planet with an offset distance less than B_a will
strike the planet.

Equating rite angular momentum Bt_ V** at a point a
great distance from the planet to that at grazing en-
counter with its surface, one finds that

B,_ V® = r, v0 (548)

JPL TECHNICAL MEMORANDUM 33-451

1
BIR

HYPERBOLIC

BALLISTIC ,_ /_
APPROACH ORBIT _ .

/
/.

/

Fig. 55. B vector im_.t radius

_

where

V,, = hyperbolic excess velocity of spacecraft as it
approaches body C

ro = flAD(C)

vo = speed spacecraft would have at a grazing en-
counter with surface of planet

From the vis-viva integral of Eq. (472), applied to the
planetocentric orbit,

2 1 ) (549)1)°2=/_ 'r a"

it follows that

V',= -_---_
a

r---) oo

Thus.

and solving for B,_ yields

BtR = ro + 1

Since re = a (1 --e)..

V** = _ (e - I

(550)

(551)

(552)
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2

d

where rj,is the perieentcr distance from focus (here body
C) and, for a grazing encounter, ro = %, it follows that

/e + 1\ _
B,. = _oW:-i-z) (5531

or

(e + 1_ v' •
B,_ = RAD(C) \ e - 1]

(554)

This result implies that, ff the magnitude of the vector B

is equal to Bin, then the spacecraft grazes the planet. It
should be noted that, as e _ oo, B_n--->RAD(C).

The direction cosines of the incoming asymptote (in

the orbital plane) can easily be seen to be equal to

r- 1 (e ' .- 1)']L e' e ' e >__1 (555)

and those of the outgoing asymptote

---1 (e2-1) _]e ' e ' e > 1 (556)

Thus, ff

A

s, = (s,,,s,_,s,,) (557)

and

A

so = (so,,so,,so,) (558)

denote the unit incoming and outgoing asymptote vectors
(Fig. 56), respectively, then clearly

_1= 17)t_ + (e-. 1)- 6 (559)

and

^ -(---_---)^ (e_'-1)v' _ (560)S°= P+ e "

The impact parameter vector B is resolved into two
components, which lie in the B-plane normal to the in-
coming asymptote $_. The orientation of the reference
axes in this plane is arbitrary, but one of the axes is

selected^to lie in a fixed plane. Thus, one defines a unit
vector T, lying in both the B-plane and a specified ref-
erence plane. The reference plane is usually either the
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[NG
ASYMPTOTE
VECTOR

/--INCOMING
/ ASYMPTOTE

,/ VECTOR

Fig. 56. Incoming and outgoing asymptote ve_:tors

^

ecliptic or target equatorial plane. *s The vector T is
given by

^ [ Sty -St_ ]T = "(S_, + S_,V" (S_, + S_) _''0

= (T,,T,,T,) (561)

The remaining axis is then given by a unit vector 1_

(Fig. 57), defined by

= (R,,a_,a,) (569.)

A/\

The vector. B lies in. the RT plane, and has miss corn-
portents B • _ and B ' _(the T and R components of B).
The condition

B. _ =n. fi = o (_)

denotes vertical impact on _e target (see Bef. 5, p. 4).
The angle 0 between B andT is given by

0 = tan-' ('_) (564)

_Warner, M. R., et al., JPL internal document, Oct. 80, 1968.
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i /--TARGET

Let

and

Fig. 57. The R,S,T target coordinate system

11_o= (X_o,Y_o,Z_o)

/1_o= (_t,o,¢,o,_,o)

denote sun-body C position and velocity vectors, respec-
tively. The unit vector We, defined by

_o _o X _o
IP,,ox R_,_I c _ s o, 2_ (565)

normal to the plane determined by Rs° and _tsc; i.e.,
o is normal to the orbital plane of body C (Fig. 58).

To compute the angle Gp between the incoming asymp-
tote Sz and its projection onto the orbital plane of body C,4_
one forms

c, = s_-, (_,o. _,) deg (see)

In case C = S or C = M, one defines

Wo= 1 x ft,oI
and can then use _r in Eq. (566), where, for i = E,S,

R,o = (X,o,r,o,Z,o) (56s)

li,o = (_,__?,__,o) (_9)

for the body /-body C positio.u and velocity vectors,
respe_ively.

*;Warner, M. R, et al., JPL internal document, Oct. 30, 1908.
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\ t!l/
ooYc 

Fig. 58. The vectorsR,_ and ll_c

The latitude of the incoming asymptote _z is computed
according to

_z = sin -_ (St,), deg (570)

and the longitude of the incoming asymptote 6z is given

by the expression

/S_v_ deg (571)
0, = tan-' \ S,, ]'

Similarly, latitude _o and longitude go of the outgoing
asymptote are given by

deg (572)_o = sin-' (So,)

(So, 
0o = tan -I \So,)'

Let

deg (578)

(574)

denote the body/-body C unit position vector, and let

k,, = (Xo,,ro,,Zo,) (575)

denote the body C-body t unit position vector, where

t = E (earth), S (sun), or C (Canopus). Then,the angle Er,
(Fig. 59), which lies between the vector T (defined by
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Fig. 59_. The angle Eft

Eq.561)andthep ojeetionhto ontothe plane(where

i = E, S, or C), is given by

Eri = tan -x - , deg (576)

The angle between the incoming asymptote Sz and Ro_,
denoted by Z,t_ is obviously given by

A A

Zat = cos-'x($x * ll_i) (577)

C. Aagle Group_8

The vectors Rrx and Rrz will denote the position
vectors of bodies X and Z with respect to body Y, and
XYZ will be the angle between Rex and Rrz (Fig. 60).

Clearly,

(h ^XYZ = cos -1 rx * Rrz), deg (578)

where

X = 1,-.., 11, C (C = Canopus)

Y = 1, ..., 11, C, P (P = spacecraft)

Z = 1, ..., 11, P

The meaning of the numbers is explained above, follow-
ing Eq. (445). The vectors Rrx, R_., can easily be obtained

from the ephemerid_ of the planets and the spacecraft.

4sWarner, M. R., et al., JPL internal document, Oct. 80, 1968.
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RYX r BODY X

/

._ BODY z

IK_DY Y

Fig. o0. The angle XYZ

Some of the angles in the angle group are not of the
type given by Eq. (578); these are described in the sub-
sections that follow.

1. Clock and con¢ angles. Assume _ps to be a unit

vector from the sun to the spacecraft (this vector can

always be determined because the positions of the sun
and the spacecraft are known), and R_ to be a unit
vector from the spacecraft to a reference body (earth or
Canopus; i.e., x = E ot C). A unit vector normal to
the plane determined by the spacecraft, sun, and refer-
ence body (Fig. 61) is given by

b ^

._ = Rps X R_
^ ^ (579)
Rps × R_

A unit vector _ normal to _s and ,_ may then be com-

puted 4°according to

^ ,_X l̂].ps
B = (580)

i. x
_'_ie clock angle of body t with respect to the earth or

Cauopus is defined by Fig. 62; thus,

CLEi, i = 1, .-., 11, C = clock angle of body i with re-
spect to earth

CLCi, i = 1, ..., 11 = clock angle of body i with respect
to Canopas

411nsome references,the vectors _ and B are interchanged.
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it follows that

SUN

SPACECRAFT -_

"RpS_ _ Rpx.

x=E ORC

Fig. 61. Vectors ,_ and I_

CO

SPACECRAFT

Fig. 62. Clock and cone angles

Since

A

Rpe, • B = [Rpe, !cosCLxi

• = Ru_ Jcos(90- CLxi)

= J1t_, [sin CLxi

JPL TECHNICAL MEMORANDUM 33-4$1

tan CLxi - R'_'i • _
A

(_sl)

But the coordinates of 112, in the (l_p._,_,]_) coordinate
system are

A

/o, • l,fL, •it)

Therefore,

A A

tan CLxi -- R_i " A

rL,. 

or

(5s2)

The cone angle of body i with respect to the, earth or

Canopus is also defined in Fig. 62; it is the angle COxi,
where

COEi, i=l,.'.,ll,C=cone angle of body i with

respect to earth

COCi, i=1,...,11 = cone angle of body i with

respect to Canopus

Clearly,

(L ^COxi = cos -1 , • R_) (583)

--- SPACECRAFT __

Fig. 63. The angle iASD

95



2. Angle iASD ard limb angles. The angular semi-

diameter of body i as seen from a spacecraft is denoted
by iASD and defined by Fig. 63, where i = 1,...,11. _°

Clearly,

iASD = sin -1 (584)

where RAD(i) is the radius of body t.

The angle xPNi is defined by Fig. 64. Here x is either
S (sun), E (earth), or C (Canopus), and i = 1,..-, 11.5x
Thus,

(1) SPNi (the sun--spacecraft near-limb angle of body i).

(2) EPNi (the earth-spacecraft near-limb angle of
body i).

(3) CPNi (the Canopus--spaceeraft near-limb angle of
body i).

Clearly,

xPNi = xPi - iASD, deg (585)

5°Warner, M B., et al., JPL internal document, Oct. 30, 1968.

*:Warr, er, M. B., et al., JPL internal document, Oct. 30, 1968.

x =S,E, crC

Fig. 64. The angle xPNi
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where xPi and.iASD are given by Eqs. (578) and (584).
This angle is computed to determine occultation; i.e.,
when the spacecraft cannot be "seen" any longer from
body x.

3. Hinge and swivel angles. To define the hinge and

swivel _ngles of body i, one needs the auxiliary unit
vector S (Fig. 65).

z

,-, _ .._ SPACECRAFT

E

Fig. 65. The vector

_y

Y

SLVi gpp]

J
iPtf _ps

l

Fig. 66. Hinge and swivel angles
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Vector _ is given 5_ by the expression

^ r,_, × R_s (586)

(see Ref. 22, p. 53). The hinge angle HNGi of body i is

defined in Fig. 66. This angle is computed according to
the formula .2

HNGi = tan -1 i X _)

t. llvi Rps '
deg (587)

5=Warner, M. R., et al., JPL internal document, Oct. 80, 1968.

This formula may be derived in the same way as was

Eq. (582).

The swivel angle SVLi of body i (i = 1,...,11) is also

defined in Fig. 66. Clearly,

- S. p, = cos (90- SVLi)

= sin SVLi

Hence,

SVLi ---- --sin-' (_. ftpi), deg (58 ¢_
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Appendix A

Proof of Kepler's Laws

Early in the seventeenth century, Kepler empirically
obtained the following three laws:

(1) Within the domain of the solar system, all planets

describe elliptical paths, with the sun at one focus.

(2) The radius vector from the sun to a planet gen-

erates equal areas in equal times ("law of areas").

(8) The squares of the periods of revolution of the

planets about the sun are proportional to the cubes
of their mean distances from the sun.

The concept of Newtonian gravitational theory and

Newton's second and third laws will be used to prove
Kepler's laws in a rigorous manner.

Let a point P be fixed in space and let two point

masses MI and M2 move around one another subject

only to each other's gravitational attraction (Fig. A-l).

Newton's law of gravitation states that the force acting

on body M1 caused by body M2 is given by the expression

P1

r _P

Fig. A-1. Two-body gravitatloaol attraction

Newton's second law (F = ma) allows one to write

F_ = M_ F1
(A-8)

F2 = M2 F2

where

G M1M, r:. (A-I)
r_a 1"12

G = universal gravitational constant; its value

in the mks 5a system is

G = 6.673 X 10-ix N-m2/kg 2

However, again making use of Newton's law of gravita-
Lion,

FI = G M1M_ (r2-rl)

= G M1M._
r_----_r_2 (A-4)

and :n the British engineering system is

G = 8.430 × 10 -_ lb-ftVslug _

(Ref. 24, p. 322)

r_2 = vector from M_ to M2

and, similarly,

because

F_ =G
MxM_ (rx --r2)

=
r_, r,, (A.5)

tb

From Newton's third law (every action has an opposite
and equal reaction), it follows that

F,2 = -Fa_ (A2)

_Smks = meter-kilogram-second (system of units).

98

r,_ = rj - r, = -rj, (A-G)

Combining Eqs. (A-3) through (A-5), one obtains

., GM2

r_--_ rn (A-7)
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GMx But

It is obvious from Eq. (A-6) that

_,_= V2- i:,

thus, subtraction of Eq. (A-7) from Eq. (A-8) yields

or

7_.,f_ rx2
F2- 71= -G(M1 + ,,,2/ rh

• a, _ r12 (A-9)_2 = --G(Mx +,,,2/ r_2

To simplify the notation, define

hence,

also, let

1' _ _12

Then

G(M1 + M2) _ tz

r

i: = -t_"_- (A-10)

Equation (A-10) is the fundamental equation of rela-
tive motion for a two-body system. If one takes the vector
product of Eq. (A-i0) with r, it results in

f_

or

r X _ = 0 (A-11)

because

r.Xr=O

d
-dT-(r x _,) =rx_+/.x_,

thus, Eq. (A-11) implies

or

= r x F (A-12)

d
(r x _) = o (A-tS)

r X/- = h (A-14)

where h is a comtant vector. From the definition _f a

cross product, h is perpendicular to r and r; i.e., the
bodies are moving in a plane, the equation of which is
dearly

r * h = 0 (A-15)

The quantity h is called the angular-momentum vector
of the system, and Eq. (A-14) shows that the angular
momentum of the system is constant. If Eq. (A-10) is
crossed with h,

hXF= -Lh
p X r

= _ L (r x _) x r (A46)
14

Because

(Ax B)x c = (A• c) B - (B • c) A

Eq. (A.16) may be written as follows:

_
h X _ = r--7- [(r * r)/- -- (i; * r) r] (A-17)

Now, _ is the component of i" in the radial direction

(Fig. A-2); i.e., _ _ I/" t, but rather

i = v cos¢ (A-18)

where

¢ = angle between r and i,
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Fig. A-2. Radial component of

Therefore,

i- • r := rvcos¢ = ri"
e

and the following expression for h X i: is obtained:

or

hX_= -7

(,=-_ 7---_ _)

hx_= -_-_.

Upon Integrating,

(A-19)

IP

h × _ = -_ r - P (A-20)

where P is a constant vector of integration. Dotting this
last result with the vector h, one obtains

(hX_),h=- a.r,h_E,h (A-2I)
f

But

(A X B) * C = B. (C X A)

so one may rewrite Eq. (A-21) as

_* (h X h) -- - _---r-h- P*-h
f

But

hXh=0

and

r*h=O

because h is normal to the plane of motion. Therefore,

(A-_2)

P * h = 0 (A-28)

Equation (A-23) indicates that P is normal to h; that is,

P is a fixed vector in the orbital plane. Upon dotting
Eq. (A-20) with r, one obtains

tt

(h X f,) • r -- - '--- r * r - P • r (A-24)
f _ t

From the identity

(A X B). C = - A • (C × B)

h-_r X _) =t_r + P,r (A-_)

it follows that
g

and, by Eq. (A-14),

(A-2e)

or

h.h=h_=t_r+P,r

{A-27)--=r 1+
t, _,r /

I,ct the unit vector

!
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make an angle v with the constant vector P; then

per A
-PoU

r

= P cos v

where

and Eq. (A-27) may be rewritten in the form

)m = r 1-1- COSy

Letting

h 2

p = -- (A-29)

P
e = -- (A-_U)

one obtains

p = r (I + e cos v) (A-81)

which is the general equation of a conic in polar coordi-

nates, where p is the semilatus rectum and e is the

eccentricity of the conic. This proves Kepler's first law--

the orbit of an object about its primary is a conic with
the primary at one focus. It may now be seen that the

vector P, because it lies in the orbital plane and makes

an angle z. with r, points toward the perilocus (the point

of closest approach) of the conic (Fig. A-8).

In Fig. A-3, the path velocity

= (A-32)

has a radial component _ and a transverso component

r _. The angular momentum is the moment of the trans-

verse component, which is equal to

= h (A-_)

An element of area dA in polar coordinates is

I
dA = -_ re d, (A-34)

Thus,

1
= -- r__ (A-85)

2

or

t

dA = T n dt (A-86)

Integratii_g between times t = tx and t = t_ yields

1

A = T h (t, - tl) (A-37)

Equation (A-87) proves Kepler's second law--the ra-

dius vector of the object moving on a conic section

sweeps over equal areas in equal times. It remains to

prove Kepler's third law.

In the ease of a closed conic (i.e., an ellipse), the area

over one complete orbit is

where P is the period of revolution. The area of an ellipse

is given by

A = wab

• r t: _'_.,.,t

ii
Fig, A-3. Velocities in polar reference frame
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so that

or

2.a b

v = --W- (A-3S)

From Eq. (A-29) is obtained

h = (p _)_ (A-39)

In Eq. (A-31), if one sets v = 0 and v =., one obtains

rml. and rm_xr_spectively; and, because

r_l. + rm_t = 2a (A-40)

where

it follows that

and

a = semimaior axis (A-41)

p = rmt.(l + e)

p = rm. (1 - e)

_ 219
1 - e2

or

p = a (1 - e') (A-42)

One may then write

h = [t_ (1 -- e2)] _ (A-43)

For an elli r _e, the relationship is

a2 + b _ = c _ (A-44)

where c = ae, which is the distance of the focus from

the center of the ellipse, Thus,

b = a (1 - e_) _ (A-45)

If Eqs. (A-43) and (A-45) are substituted into Eq. (A-88),
it follows that

2. as (1 - e2)_
P=

(_u)_ (1 - e_)_

Or

2rr aS� 2

/' = _,2/'-"7- (A-48)

Hence,

and Kepler's third law has been proved--the squares of

the periods of revolutiox_ are proportional to the cubes
of the semimajor axes,

.T

]
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Appendix I_

Kepler's Equation

An important equation relating the position of a body
to the time in orbit is Kepler's equation. It is not directly
related to Kepler's laws, but is a separate and indepen-
dent equation. Kepler's first law states that the planets
move on conic sections, and it was shown in Appendix A
that the conic may be represented in polar coordinate
formulation as

P (B-l)
r- 1 + ecosv

From the theory of conic sections, it follows that, pro-
vided p _ 0, ff e = 0, the conic is a circle; if 0 < e < 1,
the conic is an ellipse; if e = 1, the conic is a parabola;
and if 1 < e < oo, the conic is a hyperbola.

The semimajor axis a of the orbit is a = oo for para-
bolic motion, 0< a < oo for elliptic motion, and
- oo < a < 0 for hyperbolic motion.

For future convenience, a set of axes x_ and y,o is
introduced with the origin at the focus. The positive
_-axis points in the direction of perifocus, and the
positive y_-axis is advanced by a right angle to x,_ in the
orbit plane.

I. Elliptic FormulatiOn

To derive the elliptic formulation rOfKepler's equation,
it is useful to relate the x. and y,, parameters to the
angles v and E. The angle v is called the true anomaly,
and was defined in Appendix A. The a_xiliary angle E
is defined by Fig. B-l, and is called the eccentric anomaly.

For elliptic (including circular) motioia, it is clear from
Fig. B-1 that the coordinates of the ,_pacecraft are given
by

x, = r cos v (B-2)

y0. = r sin v (B-3)

and, in terms of E,

.'_ = a cos E - ae (B-,I)

JPL T$CHNICAL MEMORANDUM 33-451

or

From Eq. (B-2),

x_ = a (cos E - e)

Xm

COS t' _

Substitution of this result into Eq. (B-l) yields

r + exo_= p = a (1 -- e2)

or, making use of Eq. (B-5),

r = a (1 - e cos E)

Because

(B-5)

(B-6)

(B-7)

(B-S)

CIRCUMSCRIBING
CIRCLE

/

SPAC ECRAFT MOVING
IN AN ELLIPTIC ORIlT

Fig. B-1. An elliptic orbit
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the relation follows

you ---- r sin v

= a (1 - e2) v*sin E

so that, in summary,

r = a(1 - ecosE)

x, = r cos v = a (cos E - e)

y_, = rsinv = a(1 - e2)V' sin E

(B-9)

(B-10)

Differentiating this set of equations with respect to time,
one obtains

--- a e J_ sinE

= _ cos v - r _, sin v = -a/_ sin E (B-11)

_ = _ sin v + r _ cos v = a/_ (1 - e") w cos E

Let _r be a unit vector normal to the plane of the orbit.
Then

h_r = rX_

= r X (_R+/'e) (B-12)

where Sn, _'e are veloci .ty components of _" at right angles
and parallel to r, so that (by Fig. A-3)

Clearly,

because

ThUS,

r X (bR+ i-,) = r X _R+ t X _',,

= rXb_

W

= r r _sinT_V

= r: _W

rX/'e=O

hW = r_ ' (B-13)

104

or

h =r2_ (B-14)

Therefore, the following relationships exist:

p = a (I .--e 2) (by Eq. A-42)

h_
= _ (by definition)___

- (by Eq. B-14)
b¢

(rX_).(rX_-)
= (by Eq. B-12) (B-15)

The cross product r X _, referred to the orbital axes x.,

y., can now be formulated as

1 1

IrX_l= x_ V_

1

0

0

(B-16)

or, since

h=lrX_l

= (_p)_ (B-17)

itfollows that

b,p) _' = x,,,_, - k. y,. (B-18)

and, using Eqs, (B-10) and (B-11), one obtains

(t_p)_ = a (cosE - e)a E (I- e_)_ cosE

- a/_ sinE a (i- e2)_ sinE

= a_/_(p)_' (sin_E + cos_E - e cos E)/_

(B49)

or

(_)_ dE
aS/2 - (1 - e cos E)-7_" (B-20)

Upon integration,

--()'g'_ (t -- to) = E -- • sin E (B-21)
aa/2
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The epoch time to corresponds to the point on the orbit

where E = 0. This time is called the time of perifocal

passage, and is denoted by T. If one defines

n =. a._/----7-._ (B-22)

where n is called the mean motion, Eq. (B-21) may be

rewritten in the form

n (t - T) = E - e sin E (B-Z3)

Equation (B-23) is Kepler's equation, and relates posi-

tion in an elliptic orbit to time. The product n(t - T) is

called the mean anomaly, denoted by M; that is,

thus,

M = n (t - T) (B-24)

M = E -- e sin E (B-25)

II. Hyperbo,l, ic Formul_fion

When a spacecraft flies by a planet, the planet-centered

conic section on which the spacecraft is moving is a

hyperbola. To relate position and time in this kind of

orbit (Fig, B-2), recourse nmst be taken to hyperbolic
functions.

If the spacecraft P has coordinates (x,,y_,), hyperbolic
functions are ,defined a"

D"'C= a cosh F (B-26)

so that

x, = OD

= q - (-acosh F + a)

= a(e- 1) + a cosh F- a

= a (cosh F - e)

Repeating Eq. (B-7), i.e.,

r + ex. = a(1 - e 2)

and using Eq. (B-27), one obtains

r = a(1 - e cosh F)

,IPL TECHNICAL MEMOR.JNDUM 33-451

(B-27)

(B_28)

HYPERBOLIC
TRAJECTORY

SPACECRAFT

:XILIARY
HYPERBOLA

Because

it followsthat

and

Fig. B-2. A hyperbolic orbit

r2 = x 2 + y_, (B-29)

g, = -a(e 2 - 1)WsinhF (_-3o)

_, = aF sinh F (B-31)

_/, = -a(e _ - 1)v"/_coshF (B-32)

Substituting Eqs. (B-27), (B-30), (B-31), and (B-32) into
Eq. (B-18), one obtains

(,p)_ = a (cosb F - e) [-a (e' - 1)_/_ cosh F]

-a F sinh F [-a (e 2 -- 1)_ sinhF]

= a_ (e' - 1) _' (-cosh' F + sinh?F + c cosh F)/_

-_- a)'/'(p)_(ecoshF - 1)_ (B-_)



or

(g)"_ - (e eosh F - 1) dF
(-a):vY - _ (B-34)

and,upon integrationofEq. (B-34),

(t_)v'
(_a)3/2 (t - to) = esinh F - F (B-35)

As in the case of the eqiptic formulation,

T = to (B-36)

denotes the time of perffocal passage; the mean hyper-
bolic motion is defined by

(_)_

(--a)S/_

and the mean anomaly by

Mn = n (t - T)

(B-37)

(t- to) (B3S)

With this notation, Eq, (B-35) takes the form

Mn = e sinh F - F (B-39)

This is Kepler's equation for hyperbolic motion.

ill. Parabolic Formulation

In the case of a parabolic orbit, a = oo; therefore, a

new relationship must be established between the posi-
tion and time of a bod E movhag on a parebolic path
(Fig. B-3).

The general equation of a conic in polar coordinates,
in terms of the true anomaly v, is given by Eq. (A-31) as

P (B-40)
r---- 1 -- eCOSv

For a parabola, because e = 1,

p = a(1 - e)(1 + e)

= q (I + e)
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or

_Y_

\

Fig. B-3. A pambollc orbit

p = 2q (13-41)

A trigonometricidentitystatesthat

1

1 + cos r = 2 cos 2_- v

Thus, Eq. (B-40) may be rewritten as

1
r = (sec'_-v) q

Upon squaringEq. (B-42),and multiplyingbothsidesby
v,one obtains

(1)( ,)r_= sec _-v sec'-_-v q2

and, from Eq. (B-15),

(B-43)

Therefore,

I I

JPI

(B-45)
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/,

=7

and

(2:,)_ ft dt " v v
_'j,. = f sec2('_)dv+ fVian2('_)see_'_) dv

(B-46)

Equation (B-46) can be integrated at once to yield

(2_)_ (t - to) = 2 tan _ + tan 3 (B-47)
q,_/2

or

v i v
(t_)v" (t -- to) = tan + _- tan 3_ (B-48)(2)v. q3/2 "_.

Equation (B-48) is known as Barker's equation; it is

the parabolic form of Kepler's equation. As in the other

two eases, T = to denotes the time of perifocal passage.

By introduction of the parameter D, defined by

r_ w v
D _ _ = (2q) tan _- (B-49)

Eq. (B-48) may be transformed into a cubic:

D:_
Me = qD + T

with

and

(B-50)

Me = n(t - T) (B-51)

n = parabolic mean motion

-----(_)_ (B-52)

In summary, it has been shown that, for various types

of motion, there exist different forms of Kepler's equation;
that is,

M = E - esinE

M. = esinh F- F

D a
Me = qD + -.-if-

(for elliptic motion)

(B-53a)

(for hyperbolic motion)

(B-5Ob)

(for parabolic motion)

(B-53c)
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Append;,

..oiution of Kepler's Equation

For convenience, the three forms of Kepler's equation
will be repeated here:

M = E - e stn E (elliptic motion) (C-la)

M, = e sinh F - F (hyperbolic motion) (C-lb)

D 3

Me = qD + "-'6- (parabolic motion) (C-lc)

The mean anomaly M or Mu can be found at once when
(t - T) is given, after which Eq. (C-la) or (C-lb) must
be solved for E or F. The solution of Kepler's equation
in the case of a parabolic orbit will not be considered
here, principally because parabolic orbits do not occur
in practice, although some comets have nearly parabolic
paths (e = 0.96). When E or F is known, r and v can be
found from Eqs. (B-10), (B-28), and (B-l). Because r
and v are important quantities for orbit determination,
much attention has been devoted to the solution of

Kepler's equation, and many methods of solving it have
heen discovered.

Obviously, Kepler's equation is a transcendental equa-
tion in E (or F, or v), and the solution for this quantity
cannot be expressed in a finite number of terms. Some
iterative technique is usually employed for solving tran-
scendental equations--e.g., Newton's method or the
method of false position (regula falsi)--because they can
easily be programmed for use on eiectroni¢ computers.

For the elliptic ease (that is, 0 < e < 1), it will be
shown that Kepler's equation has one (and only one) real
solution for every value of M and e in the range stated
a hove.

lies between nTrand (n + 1)r. The function f(E), when
E = ¢trr, is

f(n_) = n_ - M < 0 (OS)

because, by hypothesis, nrr <: M <_ (n + 1)r.

When E = (n + 1)_, then

f [(n + 1)_] = (n + 1)_ - M > 0 (C4)

Consequently, there is an odd number of real solutions

for E that lie between n_r and (n + 1)_r. However, the
derivative

F(E)= i - ecosE (c-5)

isalwayspositivebecause

[e sin E [ < e < 1 (C-6)

Therefore, f(E) is a monotonic function of E and takes
the value of zero only once on the interval [mr, (n + 1)r].

From Eqs. (C-S) and (CA), it follows that the root of
the function given by Eq. (C-2) can be bracketed; hence,
one can find values both to the left and to the right of
the true solution E* of Eq. (C-2). If E is replaced by
M + ¢ in Eq. (C-2), then

f(M+e)= (M+e)-esin(M+e)-M

If Eq. (C-la) is rewritten in the form = e [1 - sin (M + e)] > 0 (C-7)

f(E) _ E - e sin E - M = 0 (c-s)

and M is assigned some given (fixed) value between n_

and (n + 1)_, where n is an integer, then exactly one
real value of E exists that satisfies this equation, and it

and if the ar .gument of the function _ given by Eq. (C-2)
is chosen to be

108
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then

esin (-_, e) - M

+.)
I 0

,i

(c-s)

and, for some n (say, n = k),

_/M + e\

The method of false position (Fig. C-l) is described by

Xv -- Xv-1

xv÷,-_x_- f(xv) f(x_)-/(x,,_,) '

As starting points xo and xl, one may choose, according

to the above discussion,

xo = M + e (C-10)

M +e

x, - _ (c-n)

where k is such an integer that

<0
(f is the function defined by Eq. C-2).

The method of false position is said to have converged
when

If(x,)I<,

f(e)

/e(e)

L .w w

X v+l

*,E

Fig. C-1. The method of false position

where e is a given small number. When this method is

employed on an automatic computing machine, an itera-
tion counter should limit the maximum number of itera-

tions. Figure C-1 is not meant to imply that one of the

x_ is always fixed; for the function sketched, the point xl

happened to be stationary. Equation (C-9) indicates

that, in general, not all lines pass through one of the

original estimates.

The method of false position has the disadvantage that
two successive iterates, Xo and xt, must be estimated

before the recursion formula can be used. However, only

one function evaluation _(x_) is required at each step

because the previous value _(x__1) may be retained. It can

be shown (see Ref. 19, p. 101) that the method of false

position is of the order of _1.618; that is, the con-

vergence is not quite as good as that obtained by second-

order methods (e.g., Newton's method).

It remains to be demonstrated that, for the hyperbolic

case (e > 1), the root of the equation

_.(F) = e sinh F - F - M,, = 0 (C-12)

can be bracketed; the meLhod of false position may then

be used to solve Eq. (C-12) for F.

In Eq. (C-12), let

/_ = (0M,) v' (C-13)

Then

L_

.IPL TECHNICAL
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[(eM,,)']2
3_ [(BM")"]' }+ 5l + .... (6M.)'_- M. (C-14)
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But

e (6u,,) " > (6M,,)_

because e > 1.. Also,

[(6M,,y/_] 3
M.-- 6

thus,

[(6Mn)V,]2 E(6M,)_]'. +... }e(6M.) w 1+ 3! + 5t

- (6Mn) w - M. > 5t + "" > 0

that is,

t [(6M-)_] > 0

(C-15)

(C-16)

(C-17)

(c-18)

Frem Eq. (C-14), it follows that, for some (positive)

integer n,

Therefore, the method of false position may be em-

ployed to find the root of Eq. (C-12). Two initial suc-

cessive iterates are given by

and

Xo= (aM.)" (C-_0)

(6Mn) _

where k is such an integer that

<o
(f is the function defined by Eq. C-12).

(12-21)

(c-_)

,,,'

I
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Appendix D

The Vis-Viva Integral

::r

A body b, subject to no frictional forces, moving in
the gravitational field of another body B, moves faster

as it approaches the attracting mass because some of its

potential energy has been converted into kinetic energy.

It is shown in physics that the loss in potential energy

equals the increase in kinetic energy (if there are no

frictional forces); in other words, the sum of kinetic and

potential energy is constant. The kinetic energy (KE) of

body b having mass m and moving with velocity v is

equal to 1/2 rnv_; the potential energy (PE) of this body

is given by the expression

PE =- _rn (D-l)
r

where

r = distance of b from B

t• = G(M + m)

where

G = universal gravitational constant

M = mass of body B

The expression given for the PE is negative because,

by convention, it is taken to be zero at r = oo; hence, PE

grows more negative as r increases, approaching nega-

tive infinity as r approaches zero. For simplicity, and

without loss of generality, one may assume that body 5

has unit mass; its total energy is then given by the

expression

v_ (D-_)9 r

and, as mentioned above, this sum is cotlstant. The con-

stant to which this expressioi_ is equal is evaluated below.

A unit mass is assumed to move on an elliptic path

about a mass M. At any point in its orbit, its velocity v
has a radial component v, and a transverse component

vr; that is,

v, = v_ + v_ (D-S)
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where

v=iv I
l)r_lYr I

I)I' _ I V'I' I

The longest and shortest distances of the unit mass

from mass M (which, by Kepler's second law, is located

at one of the loci of the ellipse) occur at opposite ends

of the semimajor axis. These points are called apog_

and perigee, respectively, and their distances from the

mass M are labeled rm_x and r_,. (Fig. D-l). It should

be noted that, at apogee and perigee, the velocity is
normal to the radius vector.

Let r_ denote either r_,_ or rm_,, and let v_ denote the

corresponding velocities at r_. By Kepler's second law,

the angular momentum is constant; hence,

rvr = rt v_ (D-4)

or

where

(+)v_ = v_ (D-5)

r=lr I

v_SODV b

Fig. D-1. Velocity components of body b
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Also_

1 v__ _ 1 .,_..___
"T "7 = T v' r, (D-6)

because the sun" of KE and PE is constant.

Using Eq. (D-5), one may write

1 v2_ t_- 1 (ry t_
"T r 2 \ / r'-S (D-7)

or

-r o -O (D-S)

This quadratic equation in r_ has two solutions. Becausse

there are two values of t, each solution gives one of the
r. but

rm_ + rmt, = 2a (D-9)

where a is the semimaior axis.

From the theory of quadratic equations, the sum of the
two solutions of

Ax 2 + Bx + C = 0 (D-10)

is equal to -B/A. It may be deduced, therefore, from
Eq. (D-8), that

2_ (D-II)2a = rmt, + r_.x = o_
1)2--_

r

or

2 1 ) (D-12)t_ ----- /x r a

Equation (D-12) is the so-called vis-viva integral or vts-

viva equation. It follows that the sum of KE and PE of

body b is equal to

1 t_
-- v 2 ..... (D-13)2 r 2a

It is remarkable that the velocity of a body in orbit

depends upon only the semimajor axis of the conic on

which it is moving.

Although the vls-viva integral has been derived herein

only for the case in which the conic is an ellipse, the

vis-viva integral is generally valid. Hence, in the case of

a hyperbola,

2 1 ) (D-I4)v2=F 'r- a

A parabola is the limiting case of an ellipse in which the

semimajor axis a becomes infinite. In this case, Eq. (D-12)
takes the form

v a = -- (D-15)
1,
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Appendix E

Linearized Flight Time

In this appendix, the two trajectories shown in Fig. E-1
will be considered. The spacecraft enters the sphere of

influence on the standard traiectory at time tl with hyper-
bolic excess velocity V_s, descends vertically to the tar.

get, and arrives at time t2. The spacecraft enters the

sphere of influence on a perturbed traiectory at time
(t_ + At/V=) with hyperbolic excess velocity V®, and

descends to the point of elosest approaeh at time t3. From

Fig. E-l, the following deflnitiou applies:

AT I= t_--t= (E-l)

From Kepler's equation for hyperbolic motion,

At----t._--tl=
e sinh F -- F

tl
(E-2)

where n is the mean motion and

{' (E-3)
"= \SZV/

Because _.

2 1 ) (vis-viva integral) (E-4)V_=_e r a

for the hyperbolic excess velocity, it follows that

V_ = -___c (E-5)
a

or

Thus,

t_ =([a"_ v" (E-6)

and_.Eq. (E-3) becomes

pc
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Fig. E-1. Trajectory approach geometry

Substitution of this expression for n into Eq. (E-2) yields

_" (e sinh F - F) (E-7)
At =-_-=

For a hyperbolic orbit,

r = a(1 - e cosh F) (E-8)

hence,

¢

1 - e eosh F =--
a

or

a-r

cosh F -- -- (E-9)
a_

If the well-known identity

cosh -1 x = log [x + (x _ - 1) V']
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is used, it follows from Eq. (E-8) that

a-r F(a-,y

Now

sinh F = (cosh _F - 1) _

so that

or

[ (+)' ]"esinhF= 1-2 r + -e'
a

(E-10)

(E-n)

Substitution of Eqs. (E-10) and (E-11) into Eq. (E-7)
yields

+)' ]"At = W 1 -- -- e -°
V®

[a--r J(a--ry ]}- log _ + _\ ae / - 1

Let us now consider the expression

(E-12)

which is the first term of Eq. (E-12). This term may be
rewritten as

as, according to Eq. (E-5),

1 v;
/,re

(E-14)

,,.'"

Equation (E-14) m_y be rewritten as

(E-15)

This last expression is appfo_timately equal to

when Ir t" Ir, I, that is,

r

V. (E-16)
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=-_-TforIr I,, Ir,l
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The second term on the right side of Eq. (E-12). is

_,. Ea-r /('-ryllog + - 1

which may be rewritten as

" E'-' /C,-rV_-ff log + - 1]= ...... -_a_:l°g[ a-r+(a2-2ar+r_-a''e2)v- ]**ae

_ t_e log --_-+ 1---+a "_'-e _
V_ e

,= - _ log - _ + 1 - T + 7- e2 + -_-_=,-log e

NOW,

r +(1 2r1 a a r = )" il 1(1 2 1 e2_"- I+ _- e 2 = r • + ' + a _-r a ar 77] I

which, for Ir I" Ir, I, i_ approximately

[ I' (+)]r -- =r -- "q- -- = --a "if" a .o

(E-18)

(E-Z9)

(E-20)

(E-_Z)

From the last term of Eq. (E-19) and the second term on the right side of Eq. (E-21), it follows that, for Irl, ir, i,

( ].}V_'_=t_clog _a--r + L\'--'_-e/V(a-r)'-I = V_t_c'°g'-'_c + loge (E-22)

Substituting Eqs. (E-17) and (E-22) into Eq. (E-12),

one obtains the following expression for At:

At = ts --tl =
V_ V_ log _ + _ log e

I'1"I',1 (E.23)

where

r= Ir, I+at

From Eq. (E-28) and Fig. E-l, it follows that

rs _,c log 2r_V_a
t, - tt = V.,a V_a " _¢

dPt TECHNICAL MEMORANDUM 33.451

(E-PA)

In this case, because there is no rectilinear motion, no

correction term (as in Eq. E-28) is required. From Eqs.

(E-28) and (E-24) is obtained

r rs pc
ATI = t, -- t= = V** V**s + _ log e (E-25)

Now

r_

r

and _*

Vm8 _" V00

B'Thornton, T. H., JPL internal doctunent, Mar. 1, 1962.
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Hence: Eq. (E-25) takes the form

//.e

aT/= _ log e

This establishes Eq, (517) in Section X-B.

From the well-known identity

sinh-_x = log Ix + (x" + 1)w]

it follows that

e = x + (x'-' + 1)"_

or

e - x = (x_+ 1)_"

(E-26)

Thus,

and

e'-'--1
X_

2e

f e_ - 1'_
log e -= sinh -_ \_] (E-27)

By use of Eqs. (E-0) and (E-27), Eq. (E-26) may be
rewritten as

/ Ia Is\ '/'•T,-
which shows that Eqs. (517) and (518) in Section X-B
are indeed equivalent.

_, :,
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Glossary

Acceleration: 1. Rate of change of velocity. 2. Act or process of accelerating, or

the state of being accelerated. Negative acceleration is called deceleration.

Angular momentum vector: Cross product (vector product) of the position vector

of a body and its velocity vector relative to its primary; usually angular mom_._

turn vector per unit mass.

Anomalistic period: Interval between two _aecessive perigee passes of a satellite

in orbit about its primary. Also called perigee-to-perigee period.

Apo-: In the orbit of one body about another, this prefix indicates the greatest

separation.

Apofocus: The apsis on an elliptic orbit farthest from the principal focus or
center of force.

Apogee: 1. Point on an ellipse farthest from th ." principal focus or the center of
force. 2. Point on a geocentric elliptle orbit farthest from the center of the earth.

Apsis (pl. apsides): Point on a conic where dr/dr = 0; i.e., where the radius vector
is a minimum or a maximum.

Areo-: Combining form of Mars (Ares), as in areocentric.

Argument of latitude: Angle in the orbit from the ascending node to the object;

the sum of the argument of perifocus and the.true anomaly.

Argument of perifocus: Angular distance measured in the orbit plane from the
line of nodes to the line of apsides.

Ascending node: Point at which the orbital plane of a body crosses a fixed plane

(e.g., the ecliptic) with a positive component of velocity in the z direction.

Astronomical unit: A unit of length; the mean distance or semimajor axis of the

orbit of a fictitious unperturbed planet having the mass 0.000002819 rn_ (mass

of sun) and sidereal period (365.2563835 mean solar days) that Gauss adopted
for the earth in his original determination of the gravitational constant k,

(= 0.01720209895). According to the IAU system of constants (see Ref. 10, p. 34),

1 astronomical unit = 1 AU = 149,600,000 km.

Atomic clock: A timekeeping device controlled by the frequency of the nat_.tral

vibrations of certain atoms (e.g., cesium atoms).

Atomic time: The unit of atomic time is derived from the atomic resonance

corresponding to transitiotl between the two hypetfine levels of the ground state
of cesium 133. The frequency of this resonance is 9,192,681,770 Hz (ephemeris

time). The epoch for atomic time (A.1) is supplied by definition as follows: At the

epoch 1958 January 1, at 0_0_0" UT2, A.1 was precisely @0_0" (see Ref. 19, p. 16).

Autumnal equinox: See Equ_inoxes.

Azifnuth: Coordinate in the horizontal coordinate system that is measured west.

ward in the plane of the horizon from the prime vertical to the intersection of

the vertical circle through the object with the horizon.
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Glossary {cantd)

Azimuth angle: An angle measured at the center of tlle celestial sphere in the
r)lane of the elevated pole (north or south to agree with the }ati_de) east or west
through 180 deg.

Backward difference (T/): Defined as

Vf(x) =/(x) -[(x-h)

where h is spacing of tabulated abscissas; used for interpolation and related
processes near a tabular point at the end of the tabulated range.

Barker's equation: An equation that relates position to time for an obiect traveling
on a parabolic orbit:

where

3

(/_)v, (t -- T) = q D + -6--

r_ v

D = _ = (2q)'* tan_-

Barycenter: Center of mass of a system of masses.

Besselian year: Period of one complete orbit of the fictitious mean sun in right
ascension, beginning at the instant when the right ascension is 18 h 40 rain. This

instant, designated by the notation ".0" after the year (e.g., 1950.0), always falls
near the beginning of the Gregorian calendar year. The Besselian year is shorter

than the tropical year by the amount of 0.q48 T, where T is measured in tropical
centuries from 1900.0.

Body-f_xed coordinate system: The xy-plane is the true of-date equatorial plane
of the body; the x-axis points toward the prime meridian of the body, the z-axis
is normal to the xy-plane, and the y-axis completes the right-handed coordinate
system.

Celestial sphere: A hypothetical sphere of infinite dimensions centered at the
obsel_,'er (or center of the earth, sun, etc.).

Collision parameter: Offset distance between the extension of a velocity vector

of an object at a great distance from the center of attraction or repulsion and
this center.

Conic (section): 1. A curve formed by the inte_eetion of a plane and a right
circul x cone. 2. In reference to satellite orbital parameters, such a curve formed

without consideration of the perturbing effects of the actual shape or distributio_a
of mass of the primary.

Coordinate time: Identified with the ideal of uniform time on which the

definition of ephemeris time is based. For a transformation from proper time to
coordinate time, see Ref. 10, p. 18.
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Glossary (contd)

Covariance matrix: A symmetric matrix that has diagonal elements consisting of
the square of the standard deviations cr_ of tile parameters q_ of the parameter
vector q; the off-diagonal elemen_ are of the form ,r_,_ptj, where p_j is the corre-
lation coettlcient between parameters q_ and qj.

Cowell's method: Direct step-by-step integration of the total aeeeleration, eentraI
as well as perturbative, of a body or a spacecraft. It is a simple, straightforward
method, but has the disadvantage that a large number of significant figures must
be carried because of the large ,_entral force term.

Cross product (or vector product): An operation on two vectors; say, A a_ld B,
denoted by A × B, which is defined as a vector normal to b_th A and B with

magnitude IA IIB[ sin (_ A,n). The resultant vector C is co,,aputed according to

C = A_AvA_

B_ By Be

where the subscripts denote the epmponeqts of the vectors on the three orthogonal
axes denoted by the unit vectors f, _, and I_.

Declination: Are of an hour circle (great ci.rc!es passing through the poles) inter-
cepted between the celestial equator and the obiect.

De_nitive orbit: An orbit defined in a highly precise manner, with due regard
taken for accurate constants and observational data, and precision computational
techniques, including perturbations.

Dtfferential correction: A method of finding small corrections from the observed
minus-computed residuals, which, when applied to the elements or constants, will
reduce the deviations from the observed motion to a minimum.

Discrete integration method: A method of finding approximate values of the
solution of a differential equation on a set of discrete points.

Diurnal: Daily.

Doppler shift: 1. A shift in observed frequency when the source of the frequency
is receding from or approaching relative to the observer. If v, is the radial velocity
of the moving transmitter, the doppler shift )_a(i.e., the difference between the
true frequeficy at the transmitter and that observed at the receiver) is given by

or

where fo is the true frequency and c is the speed of light. 2. The magnitude of
the doppler effect, measured in cycles pet second (Hz).

_J

2
!

JPL TECHNICAL MEMORANDUM 33.451 119

ML_ , q



Glossary (contcl)

Dot product (or scalar product): An operation on two vectors; say, A and B,
denoted by A • B, which can be defined by IA I IB I cos (_. A,B) or equivalently
by A,B_ + AuBv + A_B_, where the subscripts denote the components of the
vectors on three orthogonal axes.

Dynamical center of a body: Point of mass concentration of the body.

-

4

Eccentric anomaly: An angle at the center of an ellipse between the line cf
apsides and the radius of the auxiliary circle through a point that has the same
x-coordinate as a given point on.the ellipse.

Eccentricity: Ratio of the radius vector through a point on a conic to the distance
from the point to the directrix.

Ecliptic: A great circle on the celestial sphere cut by the plane of the orbit of the
earth; the apparent annt_al path of the sun.

Ecliptic coordinate system: Rectangular axes with the ecliptic as the fundamental
plane and spherical coordinates: celestial longitude and latitude.

Elements of orbit: Constants defining the orbit: (i) Orientation elements: f_, longi-
tude of ascending node; i, inclination of the orbit plane; _, longitude of petffoeus.
(2) Dimensional elements: e, eccentricity,; a, semimajor axis; M0, mean anomaly;
to, epoch.

Elevation, angle of: Angle between the inertial velocity vector I- and the local
horizontal; i.e., the plane normal to r and passing through the spacecraft.

Ellipse: A plar_.e curve constituting the locus of all points, the sum of whose
distances from two fixed points (called loci) is constant.

Ephemeris (pl. ephemerides): A table of calculated position (and veloci_) co-
ordinates of an object with equidistant dates as arguments.

Ephemeris second: Tropical second at 1900 January 0.5 E.T.

Ephemeris time (E.T.): Uniform measure of time that is the independent variable
for the equations of motion and, hence, the argument for the ephemerides of the
planets, the moon, and a spacecraft.

Epoch: Arbitrary instant of time for which the elements of an orbit are valid

(e.g., initial, injection, or correction tia,'.e).

Equator _tstern: Rectangular axes referred to the equator as the fimdamental
plane and having spherical coordinates (right ascension and declination).

Equinoxes: Intersections of the equator and the ecliptic, the vernal equinox being
the point at which the sun crosses the equator going from south to north in the
spring. The autumnal equinox is the point at which the sun crosses the equator
going from north to south in the autumn.

Escape f_elocitg: Radial speed that a body must attain to escape from the gravi-

tational field of a planet or a star. When friction is neglected, the e_eape velocity
is (2Gm/r) _, where G is the universal gravitational constant, m is the mass of the
planet or star, and r is the radial distance from the center of the planet or star to
the body.

120
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Glossary (contd)

Field: A region of space within which each point has a definite value of a given
physical or mathematical quantity.

Free fall: Free and unhampered motion of a body along a Keplerian traieetory,
in which the force of gravity is counterbalanced by the force of inertia.

Gaussian gravitational constant k,: Factor of proportionality in Kepler's third law:

k, = (2rra_/2)

i° (ml + m2)

The numerical value depends upon the units employed.

General equation of a conic: In polar coordinates, the equation of a conic is
given by

P
r m

1 q- e cos v

where p is the semi!atus rectum, e is the eccentricity, and v is the true anomaly.

General precession: Combined effect of lunisolar and planetary precession.

Geo-: Combining form of earth (geos), as in geocentric.

Gravitation: Acceleration produced by the mutual attraction of two masses,

directed along the line joining their centers of mass, and of magnitude inversely
proportional to the square of the distance between the two centers of mass.

Gravitational potential: At a point, the work needed to remove an object from
that point to infinity.

Gravity: Viewed from a frame of reference fixed in the earth, force imparted by
the earth to a mass that is at rest relative to the earth. Because the earth is

rotating, the force observed as gravity is the resultant of the force of gravitation
and the centrifugal force arising from this rotation and the use of an earthbound
rotating frame of reference.

Greenwich hour angle: Angle between the vernal equinox of the earth and the

Greenwich meridian (measured in the equatorial plane of the earth).

Greenwich meridian: Zero meridian from which the geographical longitude is
measured, passing through the Greenwich Observatory at Greenwich, England.

Harmonics of the gravitational fa_ld of the earth: A series, representing the gravi-
tational potential of the earth, whose terms form a harmonic progression (i.e.,
include powers of the reciprocal of r).

Heliocentric: Referred to the center of the sun as origin.

Hour engle: Angle at the celestial pole between the observer's metidiari and the
hour circle passing through the object; a coordinate in the equatorial system.

Hour circle: A great circle that passes through the celestial poles and is, therefore,
at right angles to the equator.

dPL TECHNICAL MEMORANDUM 33-451 121

/,.,

i

i
'11

i



Glossary (contd)

Inclination i: Angle between orbit plane and reference plane; e.g., the ecliptic
(for heliocentric orbits).

Ine_al.axes:.Axes that are not in accelerated or rotational motion.

Injection: 1. The time following launch when nongravitational forces (thrust,
lift, and drag) become negligible in their effect on the trajectory of a spacecraft.
2. The process of accelerating a spacecraft to escape ve_locity.

Integration central body (ICB): A celestial body relative to which the equations
of motion of another body or of a spacecraft are integrated.

Interpolation: Approximation from tabulated values of a function (and possibly
its derivatives) of values not included in a table.

7

i

122

lacobi integral: An integral of the equations of motion in a rotating coordinate
system that relates the square of the velocity and the coordinates of an infini-
tesimal body referred to the rotating coordinate system.

lerk: A vector that specifies the time rate of change of acceleration; the third

derivative of displacement with respect to time.

]ulian century: 36,525 Julian days.

1ulian date: Number of mean solar days that have elapsed, beginning at
Greenwich noon, since January 1, 4718 B.C. For example, the Julian date of
April 3, 1986, is 2446253.

1ulian year: Average of the calendar years in the Julian calendar. It has the advan-
tage of an exact decimal fraction representation: Julian year = 365.25 Julian days.

Kepler's equation: Relates position to time for an object traveling on a conic
section:

n_(t -- T) = E - e sin E (elliptic orbit)

n_(t - T) = e sinh F - F (hyperbolic orbit)

np(t - T) = qD + D3/6 (parabolic orbit; see Barker's equation)

Kepler's laws: 1. Every planet moves in an ellipse about the sun with the sun at

one focus. 2. Every planet moves in such a way that its radius vector sweeps
over equal areas in equal intervals of time. 3. The squares of the periods of
revolution of two planets are to each other as the cubes of their mean distances
from the sun.

Latitude (celestial): Angular distance of an object north (positive) or south
(negative) of the ecliptic plane, a coordinate in the ecliptic system.

Latitude (geocentric): Angle at the center of the earth between the radius
through a given point and the equatorial plane.

Launch window: Postulated opening in the continuum of time or of space through
which a spacecraft must be launched to achieve a desired encounter, rendezvous,
impact, etc.
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Glossary (contd)

Legendre polynomials: Coefficients of the expansion

i=O

where Po(q) = 1, P2(q) = q, P2(q) = 1/2 (8q 2 - 1); the nth Legendre polynomial
is given by the reeursion formula

2n-1 n-1
P,, - q P,-t P,_-.,

n n

Libration: 1. Apparent tilting and side-to-side movements of the moon that render

approximately 18% of its surface alternately visible and invisible. 2. Periodic

perturbative oscillations in orbital elements.

Limb: Edge of the visible disk of the stm_, the moon, a planet, etc.

Linearized flight time: Time-to-go on a rectilinear path to the center of the target.

Line of apsides: A line connecting the near to the far apsis; i.e., it defines the

semimajor or transverse axis.

Line of nodes: Intersection of a reference plane and an orbit plane.

Longitude (celestial): Angular distance measured along the ecliptic from the

vernal equinox eastward to the foot of a great circle passing through the object

and through the poles of the celestial sphere.

Longitude (terrestrial): Angular distance from the foot of the Greenwich meridian,

measured along the equator (east or west) to the foot of the meridian through
the location of interest.

Longitude of ascending node: Angular distance from the vernal equinox measured

eastward in the fundamental plane (ecliptic or equator) to the point of intersection

of the orbit plane where the object crosses from south to north.

Longitude of perifocus: Sum of the angle in the fundamental plane between the

vernal equinox and the line of nodes and the angle in the orbit plane, between

the line of nodes and the line of apsides, measured in the direction of motion.

Lunicentric: Referred to the center of the moon as origin; selenocentrlc.

Lunisolar precession: See precessior_ of th_ equinoxes.

Mass: A quantity chaCacteristic of a body that relates the attraction of this body

toward another body. All masses _e referred to a standard kilogram.

Mass-energy equivalence: Equ_va!enee of a quantity of mass m and a quantity

of e_aergy E, the two quantities being related by the mass-enei'gy relation E = me _,

where c is the speed of light.

Maximum true anomaly: In the ease of a hyperbola, the angle measured from a

vector directed toward perffoeus to the outgoing asymptote vector; given by

v,, = cos -a (-l/e). For an ellipse, the angle measured from a vector directed
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Glossary (contd)

toward perifoeus to a given radius vector (denoted by R ..... and called the pseudo-
asymptote); in this case,

Vm_----_-COS--1 (p -- R .....eR,n_x )

Mean anomaly: Angle through which an object would move at the uniform

average angular rpeed, measured from perffocus.

Mean di:$ance: Semimaior axis. Because the term does not represent the time-

average distance from the focus of a body traveling on an ellipse, which would

be a (1 + e2/2), it can be considered only as an historical term.

Mean ecliptic, mean equator, mean equinox: Fictitious ecliptic, equator, and

equinox represented by the precessional motions only; i.e., the effect of nutation
is removed.

Mean solar day: Elapsed time between successive passages of the meridian of an

observer past the mean sun; 86,400 s.

Mean sun: A fictitious sun that moves along the celestial equator with the mean

speed with which the true sun apparently moves along the ecliptic throughout

the year.

Meridian: 1. Terrestrial meridian--a great circle passing through the north and

south poles; e.g., the observer's local meridian passes through his local zenith and

the north and south poles. 2. Celestial meridian--a great circle on the celestial

sphere in the plane of the observer's terrestrial meridian.

Moon's celestial equator: A great circle on the celestial sphere in the plane of the

lunar equator; Le., in a plane perpendicular to the axis of lunar rotation.

n-body problem: Concerned with the gravitational interactions of masses rot, ml,

which are assumed to be homogeneous in spherical layers, under the Newtonian
law.

Newton's laws: Law of gravitation: Every particle of matter in the universe a_t-racts

every other particle with a force proportional to the product of their masses and

inversely as the square of the distance between them. Laws of motion: A set of

three fundamental postulates forming the basis of the mechanic_' of rigid bodies.

(1) Every body continues in its state of rest, or of uniform motion in a straight

line, unless it is compelled to change that state by a force impressed upon it.

(2) The rate of change of momentum is propottioiaal to the force impressed, and

takes place in the direction of the straight lifie in which the force acts. (3) To

every action there is an equal and opposite reaction.

Nodal passage, time of: Time when an obiect passes through the node from the

southern hemisphere to the northern hemisphere.

Node: Points of intersection of the great circle on the celestial sphere cut by the

orbital plane and a refcrcnce plane; e.g., the ecliptic or equator reference plane.

Numerical differentiation: A process that allows for the numerical evaluation of

the derivative of a quantity when tabular values of the quantity are given.
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Glossary (contd)

Numerical integration: A process that allows for the numerical evaluation of a
definite integral.

Nutation: Short-period terms in the precession arising from the obliquity, the
eccentricity, and the inclination of the lunar orbit and the regression of its nodes
(approximately a 19-yr period).

r

Obliquity of the ecliptic: Inclination of the ecliptic to the celestial equator; the
angle of 23 deg, 27 min between the orbital plane of the earth and its equator.

Occultation: Disappearance of a body behind another body of larger apparent size.

Orbit: Path of a body or particle under the influence of a gravitational or other
force; e.g., the orbit of a celestial body Jr, its path relative to another body around
which it revolves.

Orbital _lements: A set of seven parameters defining the orbit of a body attracted
by a central, inverse-square force.

Orbital period: Interval between successive passages of a satellite through the
same point of its orbit,

Orientation angles: Classical olSentation elements; i.e., inclination, longitude of
ascending node, and longitude of perifocus.

Osculating orbit: An orbit, tangent to the ac',aal or disturbed trajectory, having
the same coordinates and velocity.

Parameter: Semilatus rectum = a (1 - e_); not to be confused with the generic
term "parameters."

Peri.: In the orbit of one body about another, this prefix indicates the least
separation.

Perifocal passage, time of: Time corresponding to the point on the orbit when the

eccentric anomaly E = 0 (in the c,_,,e of a hyperbolic orbit, when F = 0).

Per_ocus: Point of an orbit nearest to the d_aamical center.

Perigee: 1. Point on an ellipse nearest the principal focus or center of force.
2. Point on a geocentric orbit nearest the center of the earth.

Perihelion: Point on a heliocentric orbit nearest to the sun.

Period: See ofbitaI period.

Perturbations: Deviations from exact reference motion caused by the gravitational
attractions of other bodies or forces. (1) General perturbations--a method of
calculating the perturbative effects by expanding and integrating in series.
(2) Special perturbations--methods of deriving the disturbed orbit by numerically
iiategrating the rectangular coordinates or the elements.

Phase: A portion of a trajectory influenced by a single physieal central body.

Photon: According to the quantum theory of radiation, the elementary quantity,
or quantum, of radiant energy, it is regarded as a discrete quantity, having
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Glossary (contd)

momentum equal to hv/e, where h is Planek's constant, v is the frequency of the
radiation, and c is the speed of light.

Physical central body (PCB): Celestial body that dominates the acceleration of
the spacecraft.

Planet: A celestial body of the solar system, revolving around the sun in a nearly
circular orbit; a similar body revolving around a star.

Planetary precession: Because of perturbations from the other planets on the orbit
of the earth, the ecliptic is not fixed in space, but is gradually changing.

Planetocentric: Referred to the center of a planet as the dynamical center or
origin of coordinates.

Precession of the equinoxes: Slow, 26,000-yr period, westward motion of the
equinoxes along the ecliptic arising from solar and lunar perturbations on the
equatorial_ bul_ge of the earth, which cause the terrestrial axis to preeess.

Predictor: An integration formula used in the numerical solution of ordinary
differential equations in wldeh the integral is expressed in terms of equally spaced

ordinates to the left of (but not including) the end point. This provides an initial
approximation to the new ordinate. Thereafter, the approximation is used in a
correetor to improve or eheck the approximation. A predictor formula is open;
a eorreetor formula is closed.

Primary (= primary body): Celestial body or central force field about which a
satellite or other body orbits, or from which it is escaping, or towards which it is
falling.

Prime meridian (of the earth): Meridian that passes through Greenwich, England.
For offter planets and the moon, the meridian that passes through a distinct mark.

on the surface of the planet or the moon.

Principal axes: Axes of a body about which the products of inertia vanish.

Products of inertia: Products of inertia of a body about the x,y,z axes are defined as

I,, = yx_dm, I,, = pzdm, X_,= yyzdm

Proper time: In a general relativistic framework, atomic time kept by an observer
is interpreted as the observer's proper time.

126

Radiation: 1. Process by which eleetromagnetic energy is propagated through
free space by virtue of joint undulatory variations in the electric and magnetic
fields in space. 2. Radiant energy.

Radiation pressure: Pressure exerted upon any material body by electromagnetic
radiation incident upon it. It is caused by the momentum transferred to the
surface by the absorption and reflection of the radiation.

Rectilinear" o_'bit: A trajectory for which q = O, e = 1, where q is the perffocal
distance from the principal focus to the nearer apsis [= a (1 - e)].

Red shift, gravitational: An effect predicted by the general theory of relativity in
which the frequency of light emitted by atoms in stellar atmospheres is decreased
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by a factor proportional to the (mass/radius) quotient of the star; confirmed
observationally by the spectra of white stars.

Reference orbit: Usually (but not exclusively) the best two-body orbit available

on the basis of which the perturbations are computed.

Relativistic: In general, pertaining to material (e.g., a particle) moving at speeds

that are an appreciable fraction of the speed of light, thus increasing the mass.

Relativity: A principle that postulates the equivalence of the description of the

universe, in terms of physical laws, by "arious observers or for various frames
of reference.

Residuals: 1. (O - C): small differences between the observed and computed co-

ordinates in the sense observed minus computed. 2. (O - I): small differences

between the precomputed ideal observational data and the actual observed data

on, e.g., an interplanetary mission.

Retrograde motion: Vv'estward or clockwise motion as seen from the north pole;

i.e., motion in an orbit io. which i > 90 deg.

Revolution: 1. Motion of a ee._e_tial body in its orbit; circular motion about an

axis usually external to the body. 2. One complete cycle of the movement of

a celestial body in its orbit or of a body a_ollt ._n external body, as "a revolution
of the earth about the sun."

Right ascension: Angular distance from the vernal equinox measured counter-

clockwise along the equator to the foot of the hour circle, through the object.

Rotation: Turning of a body about an axis within the body, as "tl-e daily rotation
of the earth."

Secular terms: Expressions for perturbations that are proportional to time; usually

terms of extremely long period.

Selenocentric: Referred to the center of the moon; lunicentrie.

Selenocentric equatorial coordinates: A right-handed coordinate system, centered

at the moon, with its three axes defined by the vernal equinox, north eelestial

pole (of the earth), and a direction perpendicular to these two; i.e., an equatorial
coordinate system translated to the moon.

Selenographic coordinates: Coordinates that are rigidly attached to the moon,

defined by the lunar equator and prime meridian.

Semilatus rectum: See parameter.

Semima]or axis: Distance from the eenter of an ellipse to an apsis; one half of the
longest diameter; one of the orbital elements.

Semiminor axis: One half of the shortest diameter of an ellipse.

Sidereal time: Hour angle of the vernal equinox.

Sidereal year: Time required by the earth to complete one revolution of its orbit;

equal to '165.25636 mean solar days.
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Glossary (contd)

Slug: A unit of mass; the mass of a free body that, if acted upon by a force of 1 lbf,
would experience an acceleration of 1 ft/s/s; thus, approximately 32.17 lb.

So/ar constant: Rate at which solar radiation is received outside the atmosphere
of the earth on a surface normal to the incident radiation and at the mean distance
of the earth from the sun.

Solar radiation: Total electa'omagnetic radiation emitted by the sun.

Space: i. Specifically, the part of the universe lying outside the limits of the
atmosphere of the earth. 2. More generally, the volume in which all celestial
bodies (including the earth) move.

Spacecraft: An instrumented vehicle, manned or unmanned, designed to be placed

into an orbit about the earth or into a trajectory to another celestial body, to orbit
or land thereon, to obtain informat/on about an environment; previously used

synonymously with probe.

Spacecra[t state vector: An ordered sextuple of parameters x,y,z,_,O,_, whose
numerical values are the position and veloeity components of a spacecraft.

Space-fixed coordinate system: A system in which the x-axis is in the direction of
the vernal equinox, the z-axis is normal to the specified plane (equatorial or

ecliptie) in the direction of the angular momentum vector, and the g-axis com-
pletes the right-handed eoordlnate system.

Spheroid: An oblate ellipsoid that closely approximates the mean-sea-level figure
of the earth or geoid.

Station time (ST): Time obtained at each tracking station around the world by
counting cycles of a rubidium atomic frequeney standard (see Bef. 2, p. 37).

Surface harmonic: Of degree n, an expression of the type

a.P,(eos 8) + _ [a_ cos m_ + o, sm m__]P_ cos #

where P,, is a Legendre polynomial and pm is an associated Legendre function.
A surface harmonic of type (cos raft) P_ (cos 8) or (sin ra_) P2 (cos 0) is a
tesseral harmonic ff m < n and a sectoral harmonie ff m = n; it is a solution of
the dif_e_elatial equaSon

1 _ ( _y) 1 _'g +,(n+l)g=0sin# _# sin#-_- + sin2a _8_

A tesseral harmonic is zero on n-m parallels of latitude and 2m meridians (on
a sphere with its center at the origin of spherical coordinates); a sectoral harmonic
is zero along 2n meridians (which divide the surface of the sphere into sectors).

Synodic period o[ a planet: Interval of time between two successive oppositioiis
or conju_actions with the sun, as obse_ed from the earth.

Tesseml harmonic: A surface harmonic of type (cos ra_) P_ (cos 0) or (sin m_)
P_ (cos #) is a tessetal harmonic ff m < n (and a seetoral harmonic ff m = n);
see also surface harmonic.
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Three-body problem: Problem of integrating tile equations of motion of three
bodies (e.g., sun-moon-earth) moving under their mutual gravitational attrac-
tions; directly solvable only in particular cases.

Time block: Period of time for which the coefficients of certain polynomials used
for transformation between time scales (e.g., from A.1 to UT1 time) are valid.

Time of perifoeal passage: Time when a spacecraft traveling upon an orbit passes
by the nearer apsis or perifoeal point.

Topocentric: Referred to the position of an observer on the earth as origin.

Topocentrtc equatorial coordinates: A right-handed coordinate system, centered
at the observer, with its axes defined by the vernal equinox, north celestial pole,
and a direction perpendicular to these two; i.e., an equatorial coordinate system
translated to the topos.

Traiectory: In general, the path traced by any bedy moving as a result of an
externally applied force considered in three dimensions.

Transfer orbit: In interplanetary travel, an elliptic trajectory tangent to the orbits
of both the departure planet and the target 121anet.

Tropical year: Time required (365.2422 mean solar days) by the sun to make
an apparent revolution of the ecliptic from vernal equinox to vernal equinox;
shorter than the solar year because of the precession of the equinoxes. It is the
civil year of the seasons.

True anomaly: Angle at the focus between the line of apsides and the radius
vector measured from perffocus in the direction of motion.

True ecliptic, true equator, true equinox: Actual positions of the ecliptic, equator,
and equinox, taking into account both precession and nutation.

Two-body orbit: Motion of a body of negligible mass around a center of
attraction.

Unit vector: A vector whose magnitude or length is unity; used to define direc-
tions in space.

Universal time (UT): Mean solar time referred to the meridian of G_eenwieh;
nonuniform because of the irregular rotation of the earth.

UTC: A time scale, which is Greenwich civil time; an approximation of UT2, UTC
is derived from the U.S. Frequency Standard at Boulder, Colo., and deviates
from UT_ by a known amount having a maximum of about 0.200 s (see Ref. 2, p. 36).

Vector B: A vector originating at the ce_lter of the target planet and directed
perpendicular to the incoming asymptote of the target-centered approach hyper-
bola; also called the impact-parameter vector.

Vector component: Projection of a vector on a given axis in space; e.g., if it is

the x-axis, the component of the vector A on this axis i_ denoted by A_.
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Glossary (contd)

Vector equation: An equation whose terms include vectors that can be resolved

into three compor-ent equations; e.g., i: = -t_r/r 8 actually represents three com-

ponent equations:

= p.Z
r_

where r has been replaced by it__three components x, y, and z and r by its three

components x, y, and z.

Vernal equinox: Point of intersection of the eeliptic and celestial equator at which

the sun crosses the equator from south to north in its apparent annual motion

along the ecliptic.

Vis-viva integral: An important integral of the two-body problem, giving the

orbital velocity

vz = =F " a

Year: Defined as the period of revolution of the earth in its motion about the sun.

Zenith: Point at which the upward extension of the plumb-bob direction inter-

sects the celestial sphere.

Zonal harmonic: A function P, (cos 0), where P, is the Legendre polynomial of

degree n. The function P, (cos 8) is zero along n great circles on a sphere with its

center at the origin of a system of sphelical coordinates; these circles pass through

the poles and divide the sphere into n zones (see also surface harmonic).
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A

Acceleration, 117
caused by

general relativity, 35, 52
indirect oblateness, 35, 47, 51
low-thrust forces, 35
motor burns, 35, 45, 46, 47

perturbing bodies, 36
solar radiation pressure, 35, 42--45, 47
tesseral haruaonics, 41
zonal harmonics, 41

direct oblateness a., 35, 39, 48
indirect a., 47
inertial a., 40, 41, 53, 55

inertial relativistic a., 55

input a., 43

Newtonian point-mass a., 35, 36, 48, 56

of a spacecraft, 35, 36, 41, 44, 48, 52,
56, 72, 82

of center of integration, 56

relativistic a., 53, 54, 55, 56

vector, 58

Acceleration polynomials
attitude control a., 43
low-thrust a., 43

Adams-Bashforth integration formula, 58
Angle

of inclination (see also Inclination), 6
of mean equator of earth, 19

of mean lunar equator, 31

Angle group, 94-97

Angdar

rate, 3
semidiameter, 96

Angular momentum, 16, 91

per unit mass (Ca), 16, 84, 88
vector, 10, 18, 81, 99, 117

Annulus (associated with a body), 70, 71
Anomalistic period, 117
Anomaly

eccentric a., 76
mean a., 75, 76, 105, 106, 124

true a., 88
Apo-, 117

Apocenter, 76, 83, 88

Apotocus, 117
Apogee, 111, 117

velodty at a., 88

Apsis, 117
Areo-, 117
".rgument

of latitt_dz, 11, 117

of pcrffocus, 6, 11, 12, 88, 89, 117

of perigee of the moon, 32
Aseefiding asymptote, 15, 16

vector, 15
Ascending node, 11, 19, 88, 117

mean a. of lunar orbit, 31
of equator of Mars on mean equator

of earth, 28

INDEX

Ascending node (contd)
of mean equator of date of earth, 19

of mean equator of earth, 28
of orbit of Mars, 27

Ascension, right, 3, 15, 44, 48, 77, 81

Astronomical unit, 55, 73, 74, 117

Asymptote
incoming a., 89, 92, 93, 94

outgoing a., 92

Atomic clock, 117

Atomic time (A.I), 3, 43, 117
At the epoch, values, 19

Attitude control model, 70
Automatic step-sizt control, 89-71
Autumnal equinox (see Equinox)
Axes of a spacecraft

pitch axis, 43
roll .axis, 43, 44

yaw axis, 43
Axes, principal, 50
Azimuth, 117

angle, 78, 118

body-fixed a. angle, 80

of launch, 15, 16

B

Backward difference, 56, 60, 118

line, 59, 64, 65, 70

operator, 58, 57

Barker's equation, 10, 14, 85, 107, 118

Baryeenter, 118
Earth-moon b., 4

Bending, gravitational, 52
Besselian year, 19, 118

Body-fixed
azimuth angle, 80
coordinate system, 2, 40, 41, 80, 118

of a body, 40

of Mars, 27, 29

flight-path angle, 80

position a_d velocityvectors,78

Body group, 77-83

c

Celestial

pole,true,mean, 23

sphere,118
Center

of integration,35, 38,40, 41, 44, 47, 58

of mass, dynamical,40

Centralbody

physicalc.(PCB), 70, 126

integrationc. (ICB),70, 71, 122

Circular orbR, 12, 87
Classical Newtonian theow, 52

Clock angle, Fig. 62; 94, 95

Collision parameter, 91, 118

Cone angle, Fig. 62; 94, 95

Conic (: conic section), 9, 10, 12, 14, 77,
82, fi3, 85, 101, 118

Conic group, 77, 82-94

Coordinate
conversions, 2

system

body-fixed c., 2, 27, 40, 41
earth mean ecliptic and equinox

of date c., 33

inertial c,, 40

Mars-fixed c., 40

Moon trim equator and equinox

of date c., 33

space-fixed c., 2, 27

up-north-east c., 52

time, 4, 118

transformation, 2
Corrected difference line, 60
Corrector

cycle, 71
formulas, 59

Covariance matrix, 73, 119

Cowell method, 1, 119
Cress product,99, 119
Curvature of space-time, 53

C1, 84
Cs, 83--85

D

Declination, 44, 46, 119

angle of a spacecraft, 78

angle of body i, 81

of ascending asymptote, 15, 16

of north pole of Mars, 27, 28

Definitive orbit, 119

Deflection angle between asymptote
vectors, 86

Descending node of lunar equator, 33
Difference

backward d., 56, 60, 70, 72

backward d. line, 59, 85, 69, 70

backward d. operator, 56

corrected d. line, 60
modified central d., 73

ordinary central d., 74
Differetttial

correction, 72, 73, 77, 119

equation, 56, 70
operator, 57 "

I)ifferentiation formula, 59

Direct-oblateness perturbatiofis, 48

Discontinuity
of acceleration of a spacecraft, 65, 68,

70, 82

position-dependent d., 66
time-dependent d., 66

Discrete (integration) method, 56, 119

Disturbing body, 47

Diurnal, 119
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Doppler (shift), 72, 119

Dot product, 120

Dynamical center of a body, 120

E

Eart_l

centered coordinate system, 9.5

equatorial (coordinate) system of
1950.0, 29, 35, 36, 40

mean ecliptic and equinox of date

coordinate system, 33

mean equator and equinox of 1950.0

coordinate system, I, 2
related transformations, 19

East longitude, 3

Eccentric anomaly, 4, 7, 12, 13, 76, 84,
103, 120

of a hyperbola, 13, 84

of an ellipse, 13, 84

Eccentricity, 4, 6, 7, 10, 14, 1_, 16, 75,

77, 83, 85, 87, 101, 120

Ecliptic, 3, 19, 31, 32, 33, 120

coordinate system, 22, 23, 120

mean obliquity of e., 9.2, 23
true obliquity of e., 25, 9.6

Effective cross section, 91

Elements of orbit, 120
Elevation, angle of, 120

Elevator principle, 53

Ellipse, 120

Ellipsoid, triaxial, 32, 50

Elliptic orbit, 6, 7, 10, 12, 83

Energy of radiation, 42

EphemeHdes, 1, 36, 73, 120
basic e., 74

interpolated e., 74
Ephemeris, 1, 36, 53,..7.7.,. 120

day, 3, 27

geocentric e., 55

heliocentric e., 55

lunar e., 77

of a planet, 35

of a spacecraft, 1, 35, 72, 7_, 77

second, 3, 26, 19-0

tape, 35

time, 3, 21, 22, 9.6, 35, 43, 46, 120

Epoch, 6, 73, 76, 77, 120

time, 12

Equations of ¢aotion, 35, 53, 56, 64, 77

Infeld's e., 54
relativistic e., 53

Equator, 2

mean _.arth e., 22, 23, 28

mean earth e. of 1950.0, 35

mean lunar e., 31
true earth e., 22, 23, 24, 25

Equinox, 2, 19, 120
autumnal e., 117

mean e. of date, 19, 20, 23, 24, 27, _,
31

Equinox (contd)
mean e. of 1950.0, 19, 20, 35

mean vernal e., 32

retrograde motion of e., 19

truc e. of date, 23, 24, 25
vernal e., 3, 23, 78, 130

Escape
hyperbola, 14, 15

trajectory, 14

velocity, 120
Everett's (interpolation) formula, 73, 74
Extrapolative (re-) start, 66, 69, 70

F

Fictitious

ecliptic, 19

equator, 19

equinox, 19
Field, 121

equations, 54

First sum, 58

Flight
linearized f. time, 87

path angle, 15, 16, 17
plane, 15

F Jrce

field, 82

function, 38
perturbing f., 38

potential, 47, 49
Free fall, 121

G

General equation of a conic in polar
coordinates, 14, 101, 103, 106, 121

General precession, 19, 121

General theory of relativity, 52-54

Generalized potential ftmction, 39

Generating function of Legendev

polynomials, 49
Geo-., 121

Geocentric

coordinates, 73, 74
lunar ephemeris, 36

position and velocity vectors, 74
Geodesic

curve, 54
line, 53, 54

Gtavlt_tion, 121

Gravitational
attrac'.ion, 53
bending, 52
constant, 6, 15

Gaussian it., 121
of a body, 30, 39

universal g., 98, 111

field, 39, 54, 111

potential, 121

Grav'ty, 53, 121

Grazing encounter, 92

Greenwich

hour angle (GILA), 3, 25, 20, 121

meridian, 25, 121

Group
angle g., 77, 94-97

body g., 77-83
conic g., 77, 83--94

H

Half-angle formula, 86

Harmonic coefficients, 39, 40

Harmonics, 40

tesseral h., 39, 40, 41, 19.9
zonal h., 39, 40, 41, 130

Heliocentric

coordinates, 73, 74
ephemerides, 30

ephemeris, 75
orbit, 87

position and velocity vectors, '14

Highest-order backward
difference, 59, 60, 64

Hinge angle, 96, 97

Hour angle, 80, 121
Greenwich h., 3, 25, 26
of mean equinox of Mars, 28

Hour circle, 121

Hyperbolic

excess velocity, 83, 91, 113
excess velocity vector, 14, 16
function, 105

motion, 84

orbit, 5, 6, 8, 10, 13, 14, 83, 84, 105,
113

trajectory, 73

I

Impact parameter vector (B), 89-.92, 216

Improper operator (_7-1), 58

Inclination, 122
angle of mean equator of earth, 19
angle of mean lunar equator, 31, 33
of orbit plane, 11

Incoming asymptote, 89, 92, 93, 94
latitude of i., 93
longitude of i., 93

Ihditect potential, 50

i_ertia, 53
moment cf i., 50
products of i., 126

Iiaertial

acceleration, 40, 41, 53, 55
axes, 122

coordinate system, 40, 41, 47
coordinates, 6, I0, 40
reference system, 19

I.iffeld's _quations of motion, 54

Injection, 122

conditions, 2, 35

energy, .1.4

\

't
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Injection (contd)
parameters, 73
radius, 15, 16

velocity,10
Instantaneous

axes, 122
maneuver, 47, 60, 69, 70
motor burn, 45, 46

Integral
angular-momentum i., 38

vis-viva i., i0, 15, 08, 76, 83, 86,

91, 112, 113, 130

Integration
center of i., 35, 40, 41, 44, 56

central body (ICB), 70, 71, 122
formula, 59

Integration methods
one-step i., 56
multistep i., 56

Interplanetary trajectory, 1, 15

Interpolation, 59, 68, 122
formulas,58, 59

of ephemerides, 73, 74

Invariable plane of a system, 36, 37

J

Jacobi constant, 87

Jacobi integral, 122 _

Jerk, 19-2

Julian
century, 3, 9.1, 25, 27, 31, 122
date, 21, 22, 26, 31, 35, 122
year, 122

K

Keplerian motion, 39

Kepler's equation, 9, 13, 103. 122
approximate solution of k., 4
derivation of k., 103-107
for elliptic motion, 6, 103-105, 107, 108

for hyperbolicmotion, 106, 107,
!08, 113

for parabolic motion, 107, 108

Kepler's laws, 98, 103, 124

first, 98, 101, 103

proof of k., 98-102

second (-- law of areas), 98, 101, 111

third, 6, 98, 101, 102

Kinetic energy, 111

L

Latitude, 122

of launch site, 15, 16

of spacecraft, 78

Launch

date, 15

planet,14
site, 15
window, 122

Law of areas, 98

Legendre polynomials, 41, 123
associatcd I., 39

generating function of l., 49

I,ibration, 123
in inclination, 32

in longitude, 32

in node, 32

physical I. of moon, 32

Limb, 123

Limb angle, near, 91}

Line
of apsides, 123
of nodes, Fig. 13; 20, 123

Linearized flight time, 87, 111-116, 123

Local truncation error, 71

Longitude, 79, 81, 1o3
of ascending node, 6, 11, 88, 123

of perifocus, 123
Low-thrust acceleration polynomials, 43

Lunar

equator, 31, 33
mean I. equator,31
mean I. perigee, 31

orbit, 31, 32

prime meridian, Fig. 24; 31

theory, 31

true I. equator, 33, 34

true I. equinox, 34

unit, 74, 75

Lunicentric, 123

Lunisolar precession, 123

M

Maneuver

instantaneousm., 47

parameters,73

spring-separationm., 47

Mars

fixedcoordinatesystem,40

mean equator,27, 28
mean equator of date,27

mean equinox of date,27

mean orbitof date,-o7

hour angle,27

relatedtransformations,27

rotationmatrices,28-31

flueequator,27

trueequator of date,27
trueorbitof date,27

vernalequinox,28
Martian

prime meridian, 27
vernal equinox, 27

Mass, 123
Mass-energy equivalefice, 123

Mathematics| model, 1

Ma_/imum true anomaly, 17, 123

Mean
ascending node of lunar orbit, 31

Mean (contd)

carthequator and equinox of 1950.0,
40, 41, 44, 47, 51, 75, 83

earth equator of date, 19, 20, 21, 23
earth equator of 1950.0, 19, 20, 35
earth equatorial system, 23, 24

ccliptic, 19, 124

equator, 2, 19, 20, 22, 124
equator of earth, 22, 23

equator of Mars, 27, 28

equinox, 19, 124
equinox of date, 19, 24, 33

equinox of 1950.0, 19

longitude of moon, 31

lunar equator, 31

lunar perigee, 31

obliquity of ecliptic, 22, 23

orbit, 2
solar day, 124

sun, 124

Mean anomaly, 75, 76, 104, 105, 106, 124
of a hyperbola, 13, 84
of a parabola, 85

of an ellipse, 6, 13, 84
of moon, 32

of sun, 32

Mean distance, 98, 124

Mean hyperbolic motion, 106

Mean motion, 6, 75, 76, 104, 105

Meridian, 78, 124

transit, 3
Method of false position

(regula falsi), 108, 109, 110

lVletrle tensor, 54

Midcourse maneuver, 46, 47

Miss components of !B-vector), 92',

Modified (central) differences, 73

Moment of inertia, 50

Momentum of photons, 42

Monotonic function, 108
Moon

celestial equator, 124

fixed coordinates, 34

related angles, 31

true equator and equinox of date, 33, 34

Motion

equatiohs of m., 35, 53, 54, 56, 64, 77
mean hyperbolic m., 106
parabolic mean m., 107

relativistic equations of m., 53, 54

Multistep integration procedure, 56, 69

N

fi-body problem, 37, 124

Near body, 53, 55, 56
Near-limb angle, 96

Newtbnlan

classical n. theory, 52

point-mass acceleration, 36, 48, 5fl

potential, 54, 55
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NewtonJ$

equations of motion, 53
gravitational theory, 08

law of gravitation, 30, 49, 82, 98
laws, 124

second, I, 37, 98

third, 98

method, 108, 109

Nodal passage, time of, 12, 124

Node, 124

Noncoupled a_itude-eontrol jets, 42

North celestial pole, 2, 23

North pole of Mars, 27, 28

Numbering of planets and moon, 80

Numerical differentiation, 124
formula, 59

Numerical integration, 125
formula, 59

of equations of motion, 56, 70, 72

Nutatlon, 19, 23, 125

in longitude, 23, 25, 26

in obliquity, 23

in right ascension, 25

of Mars, 27, 28

O

Oblateness. 47, 66
direct o. perturbations, 48
effect, 14, 41

indirect o. acceleration, 51
parameters for earth, 51

parameters for moen, 51
planetary o., 48

Obliquity, 125
mean o. of ecliptic, 22, 23
true o. of ecliptic, 23, 20

Occultation, 125

Of date, values, 19

Operator

backward difference o., 56, 57
differential o., 57
improper o., 58

Orbit, 2, 7, 12, 13, 125

elliptic o., 7, 10, 12, 83, 103
heliocentric o., 87

hyperbolic o., 7, 8, 10, 13, 14, 83,

84, 105, 113

osculating o., 74, 77, 125

parabolic o., 7, 9, 10, 14, 83, 85, 106

planetocentric o., 91

rectilinear o., 126

reference o., 127

Orbital

elements, 75, 76, 77, 125

period, 12,5

plane, 88, 93, 100, 101

Orientation angles, 125

Origin, transfer of, 38

136

Osculating
conic, 74, 75

orbit, 75, 77, 125

orbital elements, 75, 76, 77
plane, 75

Outgoing asymptote, Fig. 16; 16, 92
latitude of o., 93
longitude of o., 93

P

Parabolic

mean motion, 107

orbit, 7, 9, i0, 14, 83, 85, 106

Parameter, 125

Parameter vector, 72, 73, 77

Path angle, 78, 79
body-fixed p., 80
flight p., Fig. 17; 16, 17, 18

Path velocity, 101

Partial derivatives, 75, 76

Partial sum (of harmonic series), 61

Peri-, 125

Pericenter, 83, 85, 86, 92

Perifocal passage, time of, 12, lP-_, 129

Perlfocus, 75, 101, 103, 125

Perigee, 17, 111, 125

Perihelion, 125

Perturbations, 39, 125

direct oblateness p., 48

Perturbative functions, 39

Phase, 125
change, 66

Photon, 42, 125
momentum of p., 42

Physical central body (PCB), 45, 70, 77,
126

Physical librations of mooi_, 31, 32

Pitch axis (of a spacecraft), 42
Plane

of orbit, 104

Planet, 126

Planetary
coordinates, 74
ephemerides, 73
oblateness, 48

precession, 19, 126

Planet-centered conic section, 105

Plafletocefitric, 126

Point-mass acceleration, Newtonian, 30

Polar coordinates, 101

Position-dcpendeni discontinuity, 66

Position vector (of a spacecraft), 70, 71,
80, 83, 88

Potential

asphcrical p., 39

energy, 111

Potential (contd)

force p., 47, 49
generalized p. function, 39

gravitational p., 52
indirect p., 50
of a point mass, 40
of a tesseml harmonic, 40

of a zonal hannonie, 40

Precession, 19, 38

in declination, 19

in right ascension, 19

of equinoxes, 3, 126

of Mars, 27

planetary p., 126

relativistic p., 52
-rotation matrix, 21, 29, 51

derivative of p., 21, 30

Precessional motions, 19

Predictor, 126

formula, 59
-only method, 60

Predictor-corrector, 56, 71
formula, 56, 60

full p. method, 60

method, 60

psendo-p, method, 60

Pressure, solar radiation, 42, 43

Primary, 126

Prime meridian, 2, 126
of earth, 25
of Mars, 27

of moon, 33, 34

Principal axes, 50, 126

Products of inertia, 126

Proper time, 4, 126

Pseudo-asymp.t_,_l 7

R

Radial component (of veIocity vector), 101

Radiation, 42, 126
acceleration caused by solar r.

pressure, 35, 42

energy of r., 42
photons, 42

pressure, 42, 126

solar r. constant, 43

Radius vector at injection, 15, 18

Range, 72
list (range table), 70

step-size control by r. hst, 70, 71
Rectilinear

motion, 115
orbit, 127

Red shift, 52, 126

Reduced step size, 71, 72

Reference orbit, 127

Regula falsi (method of false

position), 8, 9, 108
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Relativistic

acceleration, 53, 54, 55

inertial r. acceleration, 55
precession, 52

Relativity, d3, 127

general theory of r.,.52--54
sphere, 54

Residual, 72, 73 127
error, 73

Restart (of integration procedure), 70,
71, 72

Retrograde motion of equinoxes, 19, 127

Bight ascension, 3, 15, 43, 40, 78, 79, 19.7
of ascending asymptote, 15, lfl
of ascending node, 19

of north pole of Mars, 27
of observing station, 3

Boll axis (of a spacecraft), 43, 44
Rotation(s), 2, 127

Bound-off error, 70

S

Seasonal fluctuations, 3

Second sum, 59
Secular

motions, 19
terms, 127

Selenocentric, 127

equatorial coordinates, 19.7

Selenographic
coordinates, 74, 127
latitude, 51

longitude, 51

Semilatus rectum, 10, 17, 83, 101, 127

Semimajor axis, 7, 75, 76, 77, 83, 102,
127

Semimlnor axis, 127
Sidereal

time, 127
year, 127

Slug, 128
Solar

constant, 43, 128

panels, 45
radiation, 42, 128

radiation pressure, 42, 43, 47, 70, 89.

Solve-for

parameter, 44, 46, 72, 75
quantity, 77

Source position, 36

Space, 128

Spacecraft, 128
acceleration, 44

ephemeris, 35, 72
state vector, 72

trajectory, 66

Spac,_-Rxed coordinate _stefii, 2, 25,

27, 80, 128
of Mars, 29

Space-time continuum, 53
Spacing (= step size), 56

Sphere
of influence, 35, 66, 70, 113
relativity s., 53, 54

Spherical
harmonic, 50

triangle, 28

Spheroid, 128

Spin axis of Mars, 29

Spring-separation maneuver, 47

ST (station time), 43, 128

Starting
algorithm (for numerical integrat_ton),

58, 05, 71

procedure, 56, 64, 65, 70, 72

by Taylor-seiies expansion, 64--67

State vector of a spacecraft, 169
Station location, 73

Step size, 59, 65, 06, 69, 70, 73
control of s., 70-72
doubling of s., 70

t,alving of s., 71
reducing of s., 65, 71, 72

Stepping procedure, 56
Sum

first s., 58
second s., 59

Sun-shadow parameter, 82

Sun-spacecraft
line, 43, 44
unit vector, 43, 44

Swivel angle, 96, 97

Synodic period of a planet, 128

T

Taylor series

approximation, 65
coel_cients, I)6, 67
expansion, 57, 66, 69
start by t expansion, 64-67

Telasor, metric, 54

Tesseral harmonic, 39, 40, 41, 128

Three-body probletn, 64, 129
restricted t., 87

Time

of nodal passage, 12, 124
of perifoeal passage, 12, 105, 106,

107, 125, 129

Tifne block, 27, 129

'£ime-dependent discontinuity, 66

Time scales, 3, 4
A.I (atomic time), 3, 43, 117
E.T. (ephemeris time), 2, 3, 21, 22,

20, 35, 43, 46, 120
ST (station tin_), 43, 128
transformation betweefi t., 3, 4
UT (Universal Time), 3, 25, 129
UTC, 4, 35, 43, 129
UTO, 3
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Time scales (contd)

UT1, 3, 4, 26

UT2, 3

Topocentrlc, 129
equatorial coordinates, 129

Trajectory, 129

elliptic t., 73
hyperbolic t., 73
preliminary t., 73

Transcendental equation ,CKepler.'s), 108

Transfer of origin, 38

Transfer orbit. 129

Transformation

of coordinate systems, 2, 4--18
of time scales, 3, 4

Translation of centers, 35, 70, 73

Transverse-velocity component, I0l, 111

Trlaxial ellipsoid, 31, 32, 50

Tropical
centu_, 21, 22, 28
year, 3, 129

True anomaly, 8, 9, 17, 81, 88, 103, 129
maximum t., 17, 85

True

earth equator, 22, 23, 24
earth equator of date, 23, 24, 25

earth equatorial coordinate system,
23, 25

ecliptic, 19, 129
ecliptic of date, 23

equator, 2, 19, 23, 24, 129

equator of moon, 34
equinox, 19, 127
equinox of date, 23, 24, 25
Greenwich sidereal time, 3
longitude of date, 23

(= mean) Martian equator, 27, 28

(= mean) Martian equinox, 27, 28
obliquity of ecliptic, 23, 26

vernal equinox, 22-24, 25

Truncation error, 71, 72
evaluation, 72
local t., 71

Two-body
approximation, 64

equation, 66
forces, 73
motion, 65
orbit, 129

V

Unit vector, 100, 129

Universal i_avitational constant, 14, 36

Up--fiotth--east ¢ootdlnate system, _2

UT, 3, 25, 1_9

UTC, 4, 35, 43, 129

UTO, 3

UTI, 34, 26

UT2, 3
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v

Vector

component, 129

equation, 130
parameter v., 72

position v. of a spacecraft, 70, 71,
80, 83, 88

product (cross product), 99

velocity v. of a spacecraft, 80, 83, 88

Velocity

hyperbolic excess v., 83, 91, 113
hyperbolic excess v. vector, 14, 15, 16

Velocity (contd)

path v., 101
vector at injection, 15

vector of a spacecraft, 80, 83, 88

Vernal equinox, 3, 23, 78, 130

mean v., 23, 24

mean v. of earth, 31

of earth, 25

of Mars, 28

true v., 23, 24

Vis-viva integral, i0, 15, 68, 76, 83,
86, 91, 112, 113, 130

derivation of v., iii, 112

W

Wandering of pole, 3

Y

Yaw axis (of a spacecraft), 42
Year, 130

Z

Zenith, 130

Zonal harmonic, 130
acceleration caused by z., 41

,,,*''
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